The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli ) and non-fermenting organisms (e.g., Pseudomonas aeruginosa ). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules.
Whilst RamA is not a key mediator of antibiotic resistance in K. pneumoniae on its own, it is potentially important for enhancing the spectrum of acquired β-lactamase-mediated β-lactam resistance. LC-MS/MS proteomics analysis has revealed that this enhancement is achieved predominantly through activation of efflux pump production.
Fluoroquinolone resistance in bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding. Here we report a comprehensive analysis using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms in fluoroquinolone resistance and non-susceptibility, using Klebsiella pneumoniae, one of the most clinically important multi-drug resistant bacterial species known, as a model system. Our improved biological understanding was then used to generate rules that could be predict fluoroquinolone susceptibility in K. pneumoniae clinical isolates. Key to the success of this predictive process was the use of liquid chromatography tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole genome sequence data were functionally important in the context of fluoroquinolone susceptibility.
In vitro antibacterial susceptibility testing informs clinical decision making concerning antibacterial therapeutics. Predicting, in a timely manner, which bacterial infection will respond to treatment by a given antibacterial drug reduces morbidity, mortality, and healthcare costs. It also allows prudent antibacterial use, because clinicians can focus on the least broad-spectrum agent suitable for each patient. Existing susceptibly testing methodologies rely on growth of bacteria in the presence of an antibacterial drug. There is significant interest in the possibility of predicting antibacterial drug susceptibility directly though the analysis of bacterial DNA or protein, because this may lead to more rapid susceptibility testing directly from clinical samples. Here we report a robust and tractable methodology that allows measurement of the abundance of key proteins responsible for antibacterial drug resistance within samples of 1 µg of total bacterial protein. The method allowed correct prediction of β-lactam susceptibility in clinical isolates from four key bacterial species and added considerable value over and above the information generated by whole genome sequencing, allowing for gene expression, not just gene presence to be considered, which is key when considering the complex interplays of multiple mechanisms of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.