In the dorsal cochlear nucleus, long-term synaptic plasticity can be induced at the parallel fiber inputs that synapse onto both fusiform principal neurons and cartwheel feedforward inhibitory interneurons. Here we report that in mouse fusiform cells, spikes evoked 5 ms after parallel-fiber excitatory postsynaptic potentials (EPSPs) led to long-term potentiation (LTP), whereas spikes evoked 5 ms before EPSPs led to long-term depression (LTD) of the synapse. The EPSP-spike protocol led to LTD in cartwheel cells, but no synaptic changes resulted from the reverse sequence (spike-EPSP). Plasticity in fusiform and cartwheel cells therefore followed Hebbian and anti-Hebbian learning rules, respectively. Similarly, spikes generated by summing EPSPs from different groups of parallel fibers produced LTP in fusiform cells, and LTD in cartwheel cells. LTD could also be induced in glutamatergic inputs of cartwheel cells by pairing parallel-fiber EPSPs with depolarizing glycinergic PSPs from neighboring cartwheel cells. Thus, synaptic learning rules vary with the postsynaptic cell, and may require the interaction of different transmitter systems.
Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).
IntroductionSeveral in vitro studies have suggested the effects of adipokines and insulin resistance on breast cancer cell proliferation and survival. However, little is known about the clinical significance of these findings.MethodsWe examined associations between breast cancer recurrence and adiponectin, leptin, insulin resistance, and metabolic syndrome (MetS) in a cohort of 747 patients from 2001 to 2004.ResultsAdjusted hazard ratios showed an inverse trend across the quartiles for serum adiponectin concentration in estrogen receptor (ER)/progesterone receptor (PR) -negative patients (P for trend = 0.027) but not in ER/PR-positive patients. Compared to the highest quartile for adiponectin level, the lowest quartile showed a hazard ratio of 2.82 (1.03 to 7.68). Homeostasis model assessment for insulin resistance (HOMA-IR) showed a positive trend for recurrence in the ER/PR-negative group (P for trend = 0.087) and a negative trend in the ER/PR-positive group (P for trend = 0.081). Leptin did not show any associations (P for trend >0.05). A linear trend was observed with the number of components of MetS in ER/PR-negative patients (P for trend = 0.044). This association disappeared when adjusted for adiponectin and HOMA-IR.ConclusionsAdiponectin and HOMA-IR have prognostic significance in breast cancer recurrence and interventions related to these factors may protect against recurrence in ER/PR-negative patients. These findings were not observed in the case of ER/PR-positive patients. Further evaluation of these insignificant associations is needed because it might be biased by adjuvant chemotherapy or other confounders.
OBJECTIVE The authors conducted this retrospective study to investigate the clinical outcomes of intracranial solitary fibrous tumor (SFT) and hemangiopericytoma (HPC), defined according to the 2016 WHO classification of central nervous system (CNS) tumors. METHODS Histopathologically proven intracranial SFT and HPC cases treated in the period from June 1996 to September 2014 were retrospectively reviewed and analyzed. Two neuropathologists reviewed pathological slides and regraded the specimens according to the 2016 WHO classification. Factors associated with progression-free survival (PFS) and overall survival (OS) were statistically evaluated with uni- and multivariate analyses. RESULTS The records of 47 patients-10 with SFT, 33 with HPC, and 4 with anaplastic HPC-were reviewed. A malignant transition from conventional SFT to WHO grade III SFT/HPC was observed in 2 cases, and 13 HPC cases were assigned grade III SFT/HPC. Mean and median follow-ups were 114.6 and 94.7 months, respectively (range 7.1-366.7 months). Gross-total resection (GTR) was significantly associated with longer PFS and OS (p = 0.012 for both), and adjuvant radiation therapy versus no such therapy led to significantly longer PFS (p = 0.018). Extracranial metastases to the liver, bone, lung, spine, and kidney occurred in 10 patients (21.3%). Grade III SFT/HPC was strongly correlated with the development of extracranial metastases (p = 0.031). CONCLUSIONS The 2016 WHO classification of CNS tumors reflected the different types of pathological malignant progression and clinical outcomes better than prior classifications. Gross-total resection should be the primary treatment goal in patients with SFT/HPC, regardless of the pathological grade, and radiation can be administered as adjuvant therapy for patients with SFT/HPC that shows an aggressive phenotype or that is not treated with GTR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.