Various tiny plastic particles were retrieved from the sea and studied using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis to prepare realistic reference microplastics (MP). Most of the MP exhibited a diameter of < 20 × 10−6 m and 0.1–0.2 molar ratios of oxygen to carbon atoms (O/C), indicating that they primarily comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS). It took a long time to reproduce such O/C ratios in standard laboratory weathering methods. For example, degrading of 30 × 30 × 0.060 mm PP film required 75 days for the 0.1 ratio, even with an advanced oxidation process (AOP) using a sulfate radical anion (SO4·−) initiator in distilled water at 65 °C. However, seawater drastically improved the PP degradation performance of AOP under a weak acid condition to achieve the 0.1 ratio of PP film in only 15 days. The combination of seawater and the SO4·− initiator accelerated the degradation process and showed that the MP’s size could be controlled according to the degradation time.
The polystyrene (PS) retrieved from the beach exhibited no change in surface texture. In contrast to it, the retrieved polypropylene (PP) had a rumpled surface texture. Highly reactive sulfate radical generated by K2S2O8 was employed as degradation initiator of PP and PS, and their degradation behavior was studied in water. The PS carbonyl index value gradually went up down, and its molecular weight (MW) curve discontinuously shifted to a lower MW with the increase of the degradation time unlike the PP. It was found that the PP microplastic production rate was approximately three time higher than the PS from weight ratio dependence on degradation time. The higher microplastic production rate of PP arose from its crystallizability. The voids were produced by change in specific volume occurring by chemi-crystallization and then provoked the cracks leading to quick fragmentation. The SEM photographs suggested that the PP microplastic size facilely reached nm order by the cracking around lamella.
Two kinds of marine polypropylene (M1-PP and M2-PP) and one land PP (L-PP) samples were collected from two beaches and land in Japan, respectively, to study the fragmentation mechanisms. Delamination was observed on both M1-PP and M2-PP surfaces. Moreover, there was no delamination but an abrasion patch structure on the surface of L-PP. The delamination was studied using an advanced oxidation process-degraded PP as the marine PP model. The number and shape of cracks varied with an increase in degradation time. The fluctuations in the values and ratios of the carbonyl index as well as the weight change ratio were due to repeated oxidation and delamination. We found that the delamination behavior depends on the oxidation state. Poly(oxyethylene)8 octylphenyl ether (POE8) surfactant treatment caused the delamination to speed up, which is a typical characteristic of polyolefin environmental stress cracking (ESC). These results reveal that delamination is based on ESC.Article Highlights Two kinds of marine and one land polypropylene (PP) samples were collected from two beaches and land, respectively, to study the fragmentation mechanisms. Delamination was observed on both of marine PP surfaces. Moreover, there was no delamination but an abrasion patch structure on the land PP surface. We found that the delamination was based on environmental stress cracking mechanism by employing a marine PP model.
A polystyrene (PS) retrieved from the beach exhibited no change in surface texture. In contrast to it, a retrieved polypropylene (PP) had a rumpled surface texture. Highly reactive sulfate radical generated by K2S2O8 was employed as degradation initiator of PP and PS, and their degradation behavior was studied in water. The PS carbonyl index value gradually went up down, and its molecular weight (MW) curve discontinuously shifted to a lower MW with the increase of the degradation time unlike the PP. It was found that PP microplastic production rate was approximately three time higher than PS from weight ratio dependence on degradation time. The higher microplastic production rate of PP arose from its crystallizability. The voids were produced by change in specific volume occurring by chemi-crystallization and then provoked the cracks leading to quick fragmentation. The SEM photographs suggested that the PP microplastic size facilely reached nm order by the cracking around lamella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.