Background: Perampanel (PER) is an oral antiepileptic drug and its concomitant use with carbamazepine (CBZ) leads to decreased PER concentrations. However, the magnitude of its influence may vary, depending on the dynamics of the enzyme induction properties of CBZ. This study aimed to develop a population pharmacokinetic (PPK) model considering the dynamics of enzyme induction and evaluate the effect of CBZ on PER pharmacokinetics. Methods: We retrospectively collected data on patient background, laboratory tests, and prescribed drugs from electronic medical records. We developed 2 PPK models incorporating the effect of CBZ-mediated enzyme induction to describe time–concentration profiles of PER using the following different approaches: (1) treating the concomitant use of CBZ as a categorical covariate (empirical PPK model) and (2) incorporating the time-course of changes in the amount of enzyme by CBZ-mediated induction (semimechanistic PPK model). The bias and precision of the predictions were investigated by calculating the mean error, mean absolute error, and root mean squared error. Results: A total of 133 PER concentrations from 64 patients were available for PPK modelling. PPK analyses showed that the co-administration of CBZ increased the clearance of PER. Goodness-of-fit plots indicated a favorable description of the observed data and low bias. The mean error, mean absolute error, and root mean square error values based on the semimechanistic model were smaller than those obtained using the empirical PPK model for predicting PER concentrations in patients with CBZ. Conclusions: We developed 2 PPK models to describe PER pharmacokinetics based on different approaches, using electronic medical record data. Our PPK models support the use of PER in clinical practice.
Aim A population pharmacokinetic (PPK) study of the correlation of adverse drug reactions (ADRs) with the 3HP regimen (weekly high‐dose rifapentine plus isoniazid for 12 doses) for latent tuberculosis infection (LTBI) remains lacking. The purpose of this study is to determine the association of rifapentine or isoniazid concentration and ADRs. Methods This prospective, multicentre, observational study enrolled LTBI contacts receiving 3HP treatment between January 2017 and August 2020. The concentrations of rifapentine, isoniazid and their metabolites (25‐desacetyl‐rifapentine and acetyl‐isoniazid) in plasma samples collected monthly after 3HP treatment were determined. A PPK model was constructed to predict the maximum concentration (Cmax) and area under the concentration–time curve from 0 to 24 h (AUC). Their association with ADRs was evaluated by applying three multivariate logistic regression models with adjustment for various covariates. Results A total of 415 LTBI cases were ultimately enrolled; 355 (85.5%) completed the 3HP treatment. Among them, 47 (11.3%) experienced systemic drug reactions and 291 (70.0%) experienced one or more flu‐like symptom. The plasma concentration–time profiles of isoniazid, rifapentine and their metabolites were adequately described by the developed models. A higher Cmax of isoniazid was significantly correlated with a higher risk of any ADR (adjusted odds ratio and 95% confidence interval: 3.04 [1.07–8.65]) and any or at least two flu‐like symptoms (all severity grades) (2.76 [1.06–7.17]). Conclusions Isoniazid may be responsible for ADRs, especially flu‐like symptoms, during 3HP treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.