-Various methods have been proposed to identify the flux position in an interior permanent magnet synchronous motor (IPMSM) without the use of mechanical sensors. To achieve this, a method that uses both the back electromotive force (EMF) and the saliency to identify the flux position in the IPMSM without the injection of high-frequency components at low speeds has been reported [16] . This method was then extended in order to drive the motor with no load to a light load [17][18] . We propose a combination of these methods with different proportional-integral (PI) controllers for controlling di dest/ dt and di qest /dt. We also introduce compensation values F L and F H to reduce the position error when the estimation rule is being selected.
Various methods have been proposed to identify the flux position in an interior permanent magnet synchronous motor (IPMSM) without the use of mechanical sensors. To achieve this, a method that uses both the back electromotive force (EMF) and the saliency to identify the flux position in the IPMSM without the injection of high-frequency components at low speeds has been reported. We propose the extended method by controlling q-axis current derivative during zero voltage vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.