Applications requiring the natural use of the human hand as a human-computer interface motivate research on continuous hand gesture recognition. Gesture recognition depends on gesture segmentation to locate the starting and end points of meaningful gestures while ignoring unintentional movements. Unfortunately, gesture segmentation remains a formidable challenge because of unconstrained spatiotemporal variations in gestures and the coarticulation and movement epenthesis of successive gestures. Furthermore, errors in hand image segmentation cause the estimated hand motion trajectory to deviate from the actual one. This research moves toward addressing these problems. Our approach entails using gesture spotting to distinguish meaningful gestures from unintentional movements. To avoid the effects of variations in a gesture's motion chain code (MCC), we propose instead to use a novel set of features: the (a) orientation and (b) length of an ellipse least-squares fitted to motion-trajectory points and (c) the position of the hand. The features are designed to support classification using conditional random fields. To evaluate the performance of the sys
The modulation recognition of digital signals under non-cooperative conditions is one of the important research contents here. With the rapid development of artificial intelligence technology, deep learning theory is also increasingly being applied to the field of modulation recognition. In this paper, a novel digital signal modulation recognition algorithm is proposed, which has combined the InceptionResNetV2 network with transfer adaptation, called InceptionResnetV2-TA. Firstly, the received signal is preprocessed and generated the constellation diagram. Then, the constellation diagram is used as the input of the InceptionResNetV2 network to identify different kinds of signals. Transfer adaptation is used for feature extraction and SVM classifier is used to identify the modulation mode of digital signal. The constellation diagram of three typical signals, including Binary Phase Shift Keying(BPSK), Quadrature Phase Shift Keying(QPSK) and 8 Phase Shift Keying(8PSK), was made for the experiments. When the signal-to-noise ratio(SNR) is 4dB, the recognition rates of BPSK, QPSK and 8PSK are respectively 1.0, 0.9966 and 0.9633 obtained by InceptionResnetV2-TA, and at the same time, the recognition rate can be 3% higher than other algorithms. Compared with the traditional modulation recognition algorithms, the experimental results show that the proposed algorithm in this paper has a higher accuracy rate for digital signal modulation recognition at low SNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.