The inflammasomes induce maturation of pro-interleukin-1β (IL-1β) and pro-IL-18. We investigated roles of the NLRP3 inflammasome in the pathogenesis of ulcerative colitis (UC). After induction of oxazolone-induced colitis, a mouse UC model, colonic tissues were assayed for inflammatory mediators. Histological studies were performed on inflamed colonic tissue from mice and UC patients. Histological severity of murine colitis peaked on day 1, accompanied by an increase in the expression of Th2 cytokines including IL-4 and IL-13. Oxazolone treatment stimulated maturation of pro-caspase-1 and pro-IL-1β, while it reduced IL-18 expression. Either exogenous IL-1β or IL-18 ameliorated the colitis with or without reduction in Th2 cytokine expression, respectively. Induction of colitis decreased MUC2 expression, which was reversed by administration of IL-18, but not IL-1β. Compared to wild-type mice, NLRP3−/− mice exhibited higher sensitivity to oxazolone treatment with enhancement of Th2 cytokine expression and reduction of mature IL-1β and IL-18 production; this phenotype was rescued by exogenous IL-1β or IL-18. Immunofluorescent studies revealed positive correlation of NLRP3 expression with disease severity in UC patients, and localization of the inflammasome-associated molecules in macrophages. The NLRP3 inflammasome-derived IL-1β and IL-18 may play a protective role against UC through different mechanisms.
Background: Non-steroidal anti-inflammatory drugs (NSAIDs) damage the small intestine by causing multiple erosions and ulcers. However, to date, no established therapies and prophylactic agents are available to treat such damages. We reviewed the role of intestinal microbiota in NSAID-induced intestinal damage and identified potential therapeutic candidates. Summary: The composition of the intestinal microbiota is an important factor in the pathophysiology of NSAID-induced small intestinal damage. Once mucosal barrier function is disrupted due to NSAID-induced prostaglandin deficiency and mitochondrial malfunction, lipopolysaccharide from luminal gram-negative bacteria and high mobility group box 1 from the injured epithelial cells activate toll-like receptor 4-signaling pathway and nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 inflammasome; this leads to the release of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-1β. Proton pump inhibitors (PPIs) are often used for the prevention of NSAID-induced injuries to the upper gastrointestinal tract. However, several studies indicate that PPIs may induce dysbiosis, which may exacerbate the NSAID-induced small intestinal damage. Our recent research suggests that probiotics and rebamipide could be used to prevent NSAID-induced small intestinal damage by regulating the intestinal microbiota. Key Messages: Intestinal microbiota plays a key role in NSAID-induced small intestinal damage, and modulating the composition of the intestinal microbiota could be a new therapeutic strategy for treating this damage.
Release of high mobility group box 1 (HMGB1) from damaged cells, which is involved in many types of tissue injuries, activates inflammatory pathways by stimulating multiple receptors, including Toll-like receptor 2 (TLR2), TLR4, and receptor for advanced glycation end-products (RAGE). Our objective was to determine the role of HMGB1 in nonsteroidal anti-inflammatory drug (NSAID)-induced damage of the small intestine. Oral indomethacin (10 mg/kg) induced damage to the small intestine and was associated with increases in intestinal HMGB1 expression and serum HMGB1 levels. In wild-type mice, recombinant human HMGB1 aggravated indomethacin-induced small intestinal damage; enhanced the mRNA expression levels of tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1, and KC; activated nuclear factor kappa B; and stimulated phosphorylation of the mitogen-activated protein kinases p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). In contrast, blocking HMGB1 action with neutralizing antibodies prevented damage and inhibited both inflammatory cytokine overexpression and activation of these intracellular signaling pathways. TLR2-knockout (KO) and RAGE-KO mice exhibited high sensitivities to indomethacin-induced damage, similar to wild-type mice, whereas TLR4-KO mice exhibited less severe intestinal damage and lower levels of TNF-α mRNA expression. Exogenous HMGB1 aggravated the damage in TLR2- and RAGE-KO mice but did not affect the damage in TLR4-KO mice. Thus, our results suggest that HMGB1 promotes NSAID-induced small intestinal damage through TLR4-dependent signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.