Various novel acridinium ester derivatives having phenyl and biphenyl moieties were synthesized, and their optimal chemiluminescence conditions were investigated. Several strongly chemiluminescent acridinium esters under neutral conditions were found, and then these derivatives were used to detect hydrogen peroxide and glucose. Acridinium esters having strong electron-withdrawing groups such as cyano, methoxycarbonyl, and nitro at the 4-position of the phenyl moiety in phenyl 10-methyl-10λ-acridine-9-carboxylate trifluoromethanesulfonate salt showed strong chemiluminescence intensities. The chemiluminescence intensity of 3,4-dicyanophenyl 10-methyl-10λ-acridine-9-carboxylate trifluoromethanesulfonate salt was approximately 100 times stronger than that of phenyl 10-methyl-10λ-acridine-9-carboxylate trifluoromethanesulfonate salt at pH 7. The linear calibration ranges of hydrogen peroxide and glucose were 0.05-10 mM and 10-2000 μM using 3,4-(dimethoxycarbonyl)phenyl 10-methyl-10λ-acridine-9-carboxylate trifluoromethanesulfonate salt at pH 7 and pH 7.5, respectively. The proposed chemiluminescence reaction mechanism of acridinium ester via a dioxetanone structure was evaluated via quantum chemical calculation on density functional theory. The proposed mechanism was composed of the nucleophilic addition reaction of hydroperoxide anion, dioxetanone ring formation, and nonadiabatic transition due to spin-orbit coupling around the transition state (TS) to the triplet state (T) following the decomposition pathway. The TS which appeared in the thermal decomposition would be a rate-determining step for all three processes.
Various indolylmaleimides (IMs) were synthesized, and their fluorescence (FL) and chemiluminescence (CL) were measured. The substitution at the 2-position of the indole ring and the 3- or 4-position of the maleimide moiety caused an obvious change in the FL and CL of the IMs. An almost on-off switching of the FL of the IMs was observed. The intramolecular charge transfer from the indole moiety to the maleimide moiety occurred in 3-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione. In the FL of the IMs, CASPT2 calculations showed deprotonation of the NH group of the indole ring and the maleimide moiety at the excited state. The C[double bond, length as m-dash]C bond in the maleimide moiety was needed for strong CL in the IMs without substitution at the 2-position of the indole ring. The relationships between the FL or CL properties and the structures of the IMs were clarified. These results provide significant information on the rational design of IMs as FL and CL probes.
A fluorescence sensing system exploiting the large and finely tunable pKa shift of aliphatic amines was developed. The amine-containing fluorescent probes with distinct pKa values in a wide pH range were successfully applied to detect a variety of enzyme reactions with a large and real-time fluorescence enhancement.
Mast cells secrete histamine upon degranulation triggered by various stimuli. Herein, we report the new detection method of mast cell degranulation using the fluorescent probe capable of detection of the released histamine. The probe was designed as the Co(II) complex of a cyanine dye, which shows a turn-on fluorescence signal based on a histamine-induced coordination displacement mechanism. Fluorescence imaging using the cell surface-anchored fluorescent probe enabled the real-time detection of mast cell degranulation induced by various secretagogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.