Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Although angiotensin converting enzyme inhibitors and a,-blockers have been reported to improve insulin sensitivity, their mechanisms of action have not been elucidated. To investigate the role of kinins in insulin sensitivity, we treated 4-week-old spontaneously hypertensive rats with either an angiotensin converting enzyme inhibitor (enalapril), an a,-blocker (doxazosin), or an angiotensin II antagonist (losartan) for 3 weeks. A control group received no drugs. In addition, 18 rats treated with enalapril or doxazosin received a simultaneous administration of a kinin antagonist (Hoe 140). Glucose clamp testing was performed in each group. Enalapril (128±1 mmHg) and doxazosin (132±2 mm Hg) decreased mean blood pressure compared with control levels (148±1 mm Hg) (P<.01). The glucose requirement for the clamp test during the administration of enalapril (25.8±0.5 mg/kg per A lthough recent antihypertensive medications con-/ \ trol blood pressure (BP) as expected, it has not J. \ -been entirely determined that they prevent cardiovascular events.1 The management of concomitant conditions such as obesity, diabetes mellitus, and hyperlipidemia is advocated as one of the keys to improving the prevention of cardiovascular events. Insulin resistance is common in the above-mentioned conditions, and hypertension itself is believed to be an insulin-resistant state.2 It has been proposed that the management of insulin resistance may contribute to the prevention of cardiovascular events.1 Thus, in the management of hypertension, consideration should be given to the influence of antihypertensive medication on insulin sensitivity. It has been demonstrated that angiotensin converting enzyme (ACE) inhibitors and a,-blockers have a beneficial effect on insulin sensitivity. 3With regard to the effect of ACE inhibitors, the reninangiotensin system, kallikrein-kinin system, or both have been suggested to participate, but the precise mechanisms of action of ACE inhibitors have not been determined. ACE is also known as kininase II and acts to degradate several kinins. Thus, ACE inhibitors de-
A thin diffusion barrier was self-formed by annealing at an interface between a Cu-Mn alloy film and a SiO2 substrate. The growth of the barrier layer followed a logarithmic rate law, which represents field-enhanced growth mechanism in the early stage and self-limiting growth behavior in the late stage. The barrier layer was stable at 450 °C for 100 h and at 600 °C for 10 h. The interface diffusivity was estimated from the morphology change of the barrier layer at 600 °C and was found to be smaller than the grain-boundary diffusivity of bulk Cu.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.