Gas-phase hydrogen radicals were introduced into a quadrupole ion trap containing singly charged phospholipids to obtain structural fragmentation patterns in tandem mass spectrometry (MS/MS). Saturated and unsaturated phosphatidylcholines were used as a model phospholipid, whose chain-length ranges between 16 and 24. The MS/MS spectrum yielded a continuous series of fragment ions with a mass difference of 14 Da, representing the saturated fatty acyl chains. The fragment ions corresponding to the double-bond position within a single fatty acyl chain showed a characteristic mass difference of 12 Da. The detection of these diagnostic product ions enabled the structural analysis of double-bond isomers of phospholipids. To further investigate the potential of radical-induced dissociation for the isomeric analysis of phospholipids, gas-phase hydroxyl radicals, and triplet oxygen atoms were employed in tandem mass spectrometry. The methylene bridges adjacent to the double-bond positions were selectively dissociated, accompanied by oxidation of the double bonds. Tandem mass spectrometry incorporating multiple radical species facilitates the structural analysis of isomeric phospholipids.
A thermal cracking cell that served as the atomic hydrogen source for hydrogen attachment/abstraction dissociation (HAD) analysis has an intrinsic problem to produce a beam of atoms reactive against heated tungsten capillary. A plasma excited by 2.45 GHz microwave discharge can deliver reactive species to a quadrupole ion trap confining analyte ions without excessive heating of the radical source components. The radical (H) production performance of the developed source was evaluated by optical emission spectroscopy and H attachment reaction to fullerene ions. The source exhibited the H attachment rate as high as a thermal cracking source forming H in the high temperature tungsten capillary to induce fragmentation processes preserving post-translational modifications. Water vapor was introduced to the source to confirm the stability to generate oxygen containing radicals, which were found present in the water vapor plasma together with atomic hydrogen. Injection of radicals from a water vapor plasma successfully dissociated peptide ions to c-/z- and a-/x-type ions as the case of HAD induced by a thermal cracking cell.
A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.
A compact ion source that produces hydrogen plasma with an electron cyclotron resonance (ECR) configuration combined with a 2-stage extraction system with a single aperture of 6 mm diameter has been designed and built to study the performance of different materials as the plasma electrode (PE) of a negative hydrogen ion source. The source has the capability to electrically bias the PE with respect to the ECR plasma. The first experiment with low ECR power input (less than 40 W) was carried out. The PE of the C12A7 electride showed the largest H− current among aluminum, molybdenum, and the C12A7 electride.
Reverse calculation of negative ion trajectory based on the measured beam emittance has been performed for the first time in multi-stage accelerator in order to reconstruct negative ion profile near meniscus, which has been a long-term issue for negative ion sources. According to reverse calculation, negative ions are mainly extracted from the periphery of extraction area, and the particles extracted from the aperture edge is lost on acceleration grids. By taking into account the lost component with reconstructed negative ion profile, the negative ion trajectory became consistent with observed beam traces on the acceleration grids. This result can be applied directly to the design of ITER accelerator as well as the other Cs-seeded negative ion sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.