Parkinson disease is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic-ubiquitinated inclusions (Lewy bodies). Mutations in alpha-synuclein (A53T, A30P) and parkin cause familial Parkinson disease. Both these proteins are found in Lewy bodies. The absence of Lewy bodies in patients with parkin mutations suggests that parkin might be required for the formation of Lewy bodies. Here we show that parkin interacts with and ubiquitinates the alpha-synuclein-interacting protein, synphilin-1. Co-expression of alpha-synuclein, synphilin-1 and parkin result in the formation of Lewy-body-like ubiquitin-positive cytosolic inclusions. We further show that familial-linked mutations in parkin disrupt the ubiquitination of synphilin-1 and the formation of the ubiquitin-positive inclusions. These results provide a molecular basis for the ubiquitination of Lewy-body-associated proteins and link parkin and alpha-synuclein in a common pathogenic mechanism through their interaction with synphilin-1.
It is widely accepted that the familial Parkinson's disease (PD)-linked gene product, parkin, functions as a ubiquitin ligase involved in protein turnover via the ubiquitin-proteasome system. Substrates ubiquitinated by parkin are hence thought to be destined for proteasomal degradation. Because we demonstrated previously that parkin interacts with and ubiquitinates synphilin-1, we initially expected synphilin-1 degradation to be enhanced in the presence of parkin. Contrary to our expectation, we found that synphilin-1 is normally ubiquitinated by parkin in a nonclassical, proteasomal-independent manner that involves lysine 63 (K63)-linked polyubiquitin chain formation. Parkin-mediated degradation of synphilin-1 occurs appreciably only at an unusually high parkin to synphilin-1 expression ratio or when primed for lysine 48 (K48)-linked ubiquitination. In addition we found that parkin-mediated ubiquitination of proteins within Lewy-body-like inclusions formed by the coexpression of synphilin-1, ␣-synuclein, and parkin occurs predominantly via K63 linkages and that the formation of these inclusions is enhanced by K63-linked ubiquitination. Our results suggest that parkin is a dual-function ubiquitin ligase and that K63-linked ubiquitination of synphilin-1 by parkin may be involved in the formation of Lewy body inclusions associated with PD.
Parkinson's disease (PD) is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic neural cell death occurs remains unknown. Proteins encoded by two other genes in which mutations cause familial PD, parkin and UCH-L1, are involved in regulation of the ubiquitin-proteasome pathway, suggesting that dysregulation of the ubiquitin-proteasome pathway is involved in the mechanism by which these mutations cause PD. We established inducible PC12 cell lines in which wild-type or mutant alpha-synuclein can be de-repressed by removing doxycycline. Differentiated PC12 cell lines expressing mutant alpha-synuclein showed decreased activity of proteasomes without direct toxicity. Cells expressing mutant alpha-synuclein showed increased sensitivity to apoptotic cell death when treated with sub-toxic concentrations of an exogenous proteasome inhibitor. Apoptosis was accompanied by mitochondrial depolarization and elevation of caspase-3 and -9, and was blocked by cyclosporin A. These data suggest that expression of mutant alpha-synuclein results in sensitivity to impairment of proteasome activity, leading to mitochondrial abnormalities and neuronal cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.