ABSTRACT. A ten-year-old Shetland pony gelding showed low appetite, ataxia, peculiar swaying, clouding of consciousness, and ultimately died. At necropsy, multiple coalescing granulomatous foci were detected in the kidneys, and small necrotic lesions were found in the cerebellum. Histologic examination of the renal tissue sections revealed extensive granuloma, and Halicephalobus gingivalis-like nematodes were seen. Similar nematodes were found in the granulomatous or necrotic lesions of the renal lymph nodes and cerebellum, and were also frequently detected in cerebrospinal meningovascular lesions. Morphologic features together with partial ribosomal RNA gene sequences of the nematodes in the lesions revealed that they were H. gingivalis. The present results indicated that H. gingivalis caused granulomatous nephritis and meningoencephalomyelitis in this pony gelding.
The Verigene Gram-positive blood culture test (BC-GP) and the Verigene Gram-negative blood culture test (BC-GN) identify representative Gram-positive bacteria, Gram-negative bacteria and their antimicrobial resistance by detecting resistance genes within 3 h. Significant benefits are anticipated due to their rapidity and accuracy, however, their clinical utility is unproven in clinical studies. We performed a clinical trial between July 2014 and December 2014 for hospitalized bacteremia patients. During the intervention period (N = 88), Verigene BC-GP and BC-GN was used along with conventional microbiological diagnostic methods, while comparing the clinical data and outcomes with those during the control period (N = 147) (UMIN registration ID: UMIN000014399). The median duration between the initiation of blood culture incubation and the reporting time of the Verigene system results was 21.7 h (IQR 18.2-26.8) and the results were found in 88% of the cases by the next day after blood cultures were obtained without discordance. The hospital-onset infection rate was higher in the control period (24% vs. 44%, p = 0.002), however, no differences were seen in co-morbidities and severity between the control and intervention periods. During the intervention period, the time of appropriate antimicrobial agents' initiation was significantly earlier than that in the control period (p = 0.001) and most cases (90%; 79/88) were treated with antimicrobial agents with in-vitro susceptibility for causative bacteria the day after the blood culture was obtained. The costs for antimicrobial agents were lower in the intervention period (3618 yen vs. 8505 yen, p = 0.001). The 30-day mortality was lower in the intervention period (3% vs. 13%, p = 0.019).
From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.