Injection of human CECs supplemented with a ROCK inhibitor was followed by an increase in CEC density after 24 weeks in 11 persons with bullous keratopathy. (Funded by the Japan Agency for Medical Research and Development and others; UMIN number, UMIN000012534 .).
E7080 is an orally active inhibitor of multiple receptor tyrosine kinases including VEGF, FGF and SCF receptors. In this study, we show the inhibitory activity of E7080 against SCF-induced angiogenesis in vitro and tumor growth of SCF-producing human small cell lung carcinoma H146 cells in vivo. E7080 inhibits SCF-driven tube formation of HUVEC, which express SCF receptor, KIT at the IC 50 value of 5.2 nM and it was almost identical for VEGFdriven one (IC 50 5 5.1 nM). To assess the role of SCF/KIT signaling in tumor angiogenesis, we evaluated the effect of imatinib, a selective KIT kinase inhibitor, on tumor growth of H146 cells in nude mice. Imatinib did not show the potent antitumor activity in vitro (IC 50 5 2,200 nM), because H146 cells did not express KIT. However, oral administration of imatinib at 160 mg/kg clearly slowed tumor growth of H146 cells in nude mice, accompanied by decreased microvessel density. Oral administration of E7080 inhibited tumor growth of H146 cells at doses of 30 and 100 mg/kg in a dose-dependent manner and caused tumor regression at 100 mg/kg. While anti-VEGF antibody also slowed tumor growth, it did not cause tumor regression. These results indicate that KIT signaling has a role in tumor angiogenesis of SCF-producing H146 cells, and E7080 causes regression of H146 tumors as a result of antiangiogenic activity mediated by inhibition of both KIT and VEGF receptor signaling. E7080 may provide therapeutic benefits in the treatment of SCF-producing tumors. ' 2007 Wiley-Liss, Inc.
BackgroundLenvatinib is an oral inhibitor of multiple receptor tyrosine kinases (RTKs) targeting vascular endothelial growth factor receptor (VEGFR1-3), fibroblast growth factor receptor (FGFR1-4), platelet growth factor receptor α (PDGFR α), RET and KIT. Antiangiogenesis activity of lenvatinib in VEGF- and FGF-driven angiogenesis models in both in vitro and in vivo was determined. Roles of tumor vasculature (microvessel density (MVD) and pericyte coverage) as biomarkers for lenvatinib were also examined in this study.MethodWe evaluated antiangiogenesis activity of lenvatinib against VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. Effects of lenvatinib on in vivo angiogenesis, which was enhanced by overexpressed VEGF or FGF in human pancreatic cancer KP-1 cells, were examined in the mouse dorsal air sac assay. We determined antitumor activity of lenvatinib in a broad panel of human tumor xenograft models to test if vascular score, which consisted of high MVD and low pericyte coverage, was associated with sensitivity to lenvatinib treatment. Vascular score was also analyzed using human tumor specimens with 18 different types of human primary tumors.ResultLenvatinib inhibited VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. In vivo angiogenesis induced by overexpressed VEGF (KP-1/VEGF transfectants) or FGF (KP-1/FGF transfectants) was significantly suppressed with oral treatments of lenvatinib. Lenvatinib showed significant antitumor activity in KP-1/VEGF and five 5 of 7 different types of human tumor xenograft models at between 1 to 100 mg/kg. We divided 19 human tumor xenograft models into lenvatinib-sensitive (tumor-shrinkage) and relatively resistant (slow-growth) subgroups based on sensitivity to lenvatinib treatments at 100 mg/kg. IHC analysis showed that vascular score was significantly higher in sensitive subgroup than relatively resistant subgroup (p < 0.0004). Among 18 types of human primary tumors, kidney cancer had the highest MVD, while liver cancer had the lowest pericyte coverage, and cancers in Kidney and Stomach had highest vascular score.ConclusionThese results indicated that Lenvatinib inhibited VEGF- and FGF-driven angiogenesis and showed a broad spectrum of antitumor activity with a wide therapeutic window. MVD and pericyte-coverage of tumor vasculature might be biomarkers and suggest cases that would respond for lenvatinib therapy.
RET gene fusions are recurrent oncogenes identified in thyroid and lung carcinomas. Lenvatinib is a multi-tyrosine kinase inhibitor currently under evaluation in several clinical trials. Here we evaluated lenvatinib in RET gene fusion-driven preclinical models. In cellular assays, lenvatinib inhibited auto-phosphorylation of KIF5B-RET, CCDC6-RET, and NcoA4-RET. Lenvatinib suppressed the growth of CCDC6-RET human thyroid and lung cancer cell lines, and as well, suppressed anchorage-independent growth and tumorigenicity of RET gene fusion-transformed NIH3T3 cells. These results demonstrate that lenvatinib can exert antitumor activity against RET gene fusion-driven tumor models by inhibiting oncogenic RET gene fusion signaling.
Unresectable hepatocellular carcinoma (uHCC) is one of the most lethal and prevalent cancers worldwide, and current systemic therapeutic options for uHCC are limited. Lenvatinib, a multiple receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptors (VEGFRs) and fibroblast growth factor receptors (FGFRs), recently demonstrated a treatment effect on overall survival by statistical confirmation of noninferiority to sorafenib in a phase 3 study of uHCC. Here, we investigated mechanisms underlying the antitumor activity of lenvatinib in preclinical HCC models. In vitro proliferation assay of nine human HCC cell lines showed that lenvatinib selectively inhibited proliferation of FGF signal‐activated HCC cells including FGF19‐expressing Hep3B2.1‐7. Lenvatinib suppressed phosphorylation of FRS2, a substrate of FGFR1–4, in these cells in a concentration‐dependent manner. Lenvatinib inhibited in vivo tumor growth in Hep3B2.1‐7 and SNU‐398 xenografts and decreased phosphorylation of FRS2 and Erk1/2 within the tumor tissues. Lenvatinib also exerted antitumor activity and potently reduced tumor microvessel density in PLC/PRF/5 xenograft model and two HCC patient‐derived xenograft models. These results suggest that lenvatinib has antitumor activity consistently across diverse HCC models, and that targeting of tumor FGF signaling pathways and anti‐angiogenic activity underlies its antitumor activity against HCC tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.