Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Intrigued by the potential of nanoscale machines, scientists have long attempted to control molecular motion. We monitored the individual 0.7-nanometer steps of a single molecular hopper as it moved in an electric field along a track in a nanopore controlled by a chemical ratchet. The hopper demonstrated characteristics desired in a moving molecule: defined start and end points, processivity, no chemical fuel requirement, directional motion, and external control. The hopper was readily functionalized to carry cargos. For example, a DNA molecule could be ratcheted along the track in either direction, a prerequisite for nanopore sequencing.
The delivery of therapeutic agents into target cells is a challenging task. Cell penetration and intracellular targeting were recently addressed with biodegradable cell-penetrating poly(disulfide)s (CPDs). Cellular localization is determined by the length of these polymers, emphasizing the significance of initial chain length and the kinetics of intracellular depolymerization for targeted delivery. In the present study, the kinetics of CPD polymer growth and degradation were monitored in a single-molecule nanoreactor. The chain lengths achievable under synthetic conditions with high concentrations of dithiolanes were then predicted by using the rate constants. For example, CPDs comprising 40 units are generated in 1 s at pH 7.4 and 0.3 s at pH 8.4 at dithiolane concentrations of 200 mM. The rate constants for degradation suggest that the main depolymerization pathway in the cell is by monomer removal by selfcyclization, rather than by intrachain cleavage by endogenous thiols. Communication pubs.acs.org/JACS
Chemists have long sought the ability to modify molecules precisely when presented with several sites of similar reactivity. We reasoned that the confinement of substrates within nanostructures might permit site-selective reactions unachievable in bulk solution, even with sophisticated reagents. In particular, the stretching and alignment of polymers within nanotubes might allow site-specific cleavage or modification. To explore this proposition, macromolecular disulfide substrates were elongated within members of a collection of tubular protein nanoreactors, which contained cysteine residues positioned at different locations along the length of each tube. For each nanoreactor, we defined the reactive location by using a set of polymer substrates (siteselectivity) and which of the two sulfur atoms was attacked (regioselectivity), and found that disulfide interchange occurs with atomic precision. Our strategy has potential for the selective processing of a wide variety of biomacromolecules, and the chemistry and substrates might be generalised yet further by using alternative nanotubes. The control of selectivity at the nanoscale has been a longstanding challenge for synthetic chemists. Two important aspects of this endeavour are site-selectivity-the ability to differentiate between two (or more) similarly reactive positions within a substrate molecule, and regioselectivity-the ability to distinguish between two (or more) sites within a given functional group 1,2. Realising selectivity in synthetic chemistry often requires exploitation Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.