A novel iterative localization algorithm with high accuracy and low anchor node dependency for large-scale wireless sensor networks is proposed in this paper. At each iteration, blind nodes are located using a weighted linear least squares-based algorithm. To prevent errors in the blind nodes from propagating and accumulating throughout the network, an anchor geometric feature-based error control mechanism is used to select the nodes that participate in the localization and to estimate the localization confidence. The simulation results show that the algorithm can be used when only a few anchor nodes are involved. This algorithm is more advanced than traditional methods, which often require a large number of well-placed anchor nodes to operate appropriately. By optimizing the decision parameter v of the algorithm, the average localization error of the algorithm is approximately 0.43 meters. When the ratio of anchor nodes (the ratio of the number of anchor nodes to the number of sensor nodes in the network) is 1.25% (i.e., 5 anchor nodes for 400 sensor nodes), the received signal strength indicator (RSSI) variance is 8 dBm, and the radio range is 50 meters. A comparison of the proposed algorithm with global localization methods, including multidimensional scaling (MDS), semidefinite programming (SDP), and shortest-path access (SPA), shows that the proposed algorithm achieves higher location accuracy and stability when the number of anchor nodes is varied. The efficiency of the proposed localization algorithm is evaluated in a real sensor network, and the accuracy is high and robust to radio channel variance.
Abstract-This paper applies wireless sensor networks to monitoring sitting condition (presence and posture). Specifically, we develop a sitting condition monitoring system based on an ambient light sensor network. As the system is hard to be modeled, a feature learning experiment has been conducted to learn about the features to design a classifier. We conducted an evaluation experiment in five different environments. Our experiment results show that our system has an accuracy around 82%, and it is robust to five different environmental noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.