Surface‐plasmon‐mediated phenylacetylide intermediate transfer from the Cu to the Pd surface affords a novel mechanism for transmetalation, enabling wavelength‐tunable cross‐coupling and homo‐coupling reaction pathway control. C−C bond forming Sonogashira coupling and Glaser coupling reactions in O2 atmosphere are efficiently driven by visible light over heterogeneous Cu and Pd nanoparticles as a mixed catalyst without base or other additives. The reaction pathway can be controlled by switching the excitation wavelength. Shorter wavelengths (400–500 nm) give the Glaser homo‐coupling diyne, whereas longer wavelength irradiation (500–940 nm) significantly increases the degree of cross‐coupling Sonogashira coupling products. The ratio of the activated intermediates of alkyne to the iodobenzene is wavelength dependent and this regulates transmetalation. This wavelength‐tunable reaction pathway is a novel way to optimize the product selectivity in important organic syntheses.
Surface‐plasmon‐mediated phenylacetylide intermediate transfer from the Cu to the Pd surface affords a novel mechanism for transmetalation, enabling wavelength‐tunable cross‐coupling and homo‐coupling reaction pathway control. C−C bond forming Sonogashira coupling and Glaser coupling reactions in O2 atmosphere are efficiently driven by visible light over heterogeneous Cu and Pd nanoparticles as a mixed catalyst without base or other additives. The reaction pathway can be controlled by switching the excitation wavelength. Shorter wavelengths (400–500 nm) give the Glaser homo‐coupling diyne, whereas longer wavelength irradiation (500–940 nm) significantly increases the degree of cross‐coupling Sonogashira coupling products. The ratio of the activated intermediates of alkyne to the iodobenzene is wavelength dependent and this regulates transmetalation. This wavelength‐tunable reaction pathway is a novel way to optimize the product selectivity in important organic syntheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.