Chinese president Xi Jinping made clear at the National Health and Wellness Conference that health is the prerequisite for people’s all-around development and a precondition for the sustainable development of China. Oral health is an indispensable component of overall health in humans. However, the long neglect of oral health in overall health agendas has made oral diseases an increasing concern. With this perspective, we described the global challenges of oral diseases, with an emphasis on the challenges faced by China. We also described and analyzed the recently released health policies of the Chinese government, which aim to guide mid-term and long-term oral health promotion in China. More importantly, we called for specific actions to fulfill the larger goal of oral health for the nation. The implementation of primordial prevention efforts against oral diseases, the integration of oral health into the promotion of overall health, and the management of oral diseases in conjunction with other chronic non-communicable diseases with shared risk factors were highly recommended. In addition, we suggested the reform of standard clinical residency training, the development of domestic manufacturing of dental equipment and materials, the revitalization traditional Chinese medicine for the prevention and treatment of oral diseases, and integration of oral health promotion into the Belt and Road Initiative. We look forward to seeing a joint effort from all aspects of the society to fulfill the goal of Healthy China 2030 and ensure the oral health of the nation.
A novel pH-sensitive nanoparticle drug delivery system for doxorubicin (DOX) is prepared. Pullulan, a natural biocompatible polysaccharide, was partly carboxymethylized; hydrazine hydrate was condensed with the carboxyl groups forming hydrazide. The hydrazide was coupled with DOX through the formation of hydrazone bond. The chemical structure of the conjugate was determined by FTIR and (1)H NMR. The pullulan/DOX conjugate nanoparticles were formed through the aggregation of hydrophobic DOX. The size and morphology of prepared nanoparticles were characterized using dynamic light scattering and transmission electron microscope. The results showed that the nanoparticles were spherical and their size was less than 100 nm. The content of DOX in conjugate was 3.18 wt %. The investigation of the release behavior in vitro indicated that the DOX was released from nanoparticles faster at pH 5.0 (62% DOX released within 24 h) than at pH 7.4 (29% DOX released within 24 h). The in vitro cytotoxicity of pullulan/DOX conjugate nanoparticles was tested by the MTT assay.
Limited stem cells, poor stretchability and mismatched interface fusion have plagued the reconstruction of cranial defects by cell-free scaffolds. Here, we designed an instantly fixable and self-adaptive scaffold by dopamine-modified hyaluronic acid chelating Ca2+ of the microhydroxyapatite surface and bonding type I collagen to highly simulate the natural bony matrix. It presents a good mechanical match and interface integration by appropriate calcium chelation, and responds to external stress by flexible deformation. Meanwhile, the appropriate matrix microenvironment regulates macrophage M2 polarization and recruits endogenous stem cells. This scaffold promotes the proliferation and osteogenic differentiation of BMSCs in vitro, as well as significant ectopic mineralization and angiogenesis. Transcriptome analysis confirmed the upregulation of relevant genes and signalling pathways was associated with M2 macrophage activation, endogenous stem cell recruitment, angiogenesis and osteogenesis. Together, the scaffold realized 97 and 72% bone cover areas after 12 weeks in cranial defect models of rabbit (Φ = 9 mm) and beagle dog (Φ = 15 mm), respectively.
Driving endogenous bone regeneration by cell‐ and factor‐free biomaterials is the most ideal repair strategy. Herein, hybrid interleaved scaffold (HDSH) with nanosized interfacial integration is assembled by organic/inorganic interactive bonding at the nanoscale. With the help of transcriptome and proteome analysis, the regenerative mechanism of this scaffold is elaborated at the molecular level, which confirms that this strategy recreates a suitable immune microenvironment (anti‐inflammatory and M2‐polarizing) and drives functional cell and cytokine adhesion, as well as inchoate vascularization. It greatly enhances endogenous stem cell recruitment, and subsequently initiates robust vasculogenesis and osteogenesis. Significant bony reconstitution in the rabbit cranial defect model (Φ = 10 mm) is observed after 12 weeks, which realizes completely new bone coverage and 79% breaking load strength relative to the natural cranium. By enhancing nano‐sized functional interfacial integration, this strategy can provide effective guidance for developing highly bioactive bone‐regenerative implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.