As a natural extension of the fuzzy variable, a bifuzzy variable is defined as a mapping from a credibility space to the collection of fuzzy variables, which is an appropriate tool to model the two-fold fuzzy phenomena. In order to enrich its theoretical foundation, this paper explores some important measures for regular bifuzzy variables, the most commonly used type of bifuzzy variables. Firstly, we introduce the regular bifuzzy variables’ mean chance measure and some properties, including self-duality and its calculation formulas. Furthermore, we also investigate the mean chance distribution for strictly monotone functions of regular bifuzzy variables based on the proposed operational law. Finally, we present the expected value operator as well as equivalent analytical formulas of the expected value of regular bifuzzy variables and their strictly monotone functions.
Bi-level programming is widely used in processing various questions, but it cannot deal with the complex and fuzzy information contained in problems. In order to solve such problems better with intricate and vague information that can be efficiently handled by bifuzzy theory, a bifuzzy–bilevel programming model that sets the parameters to bifuzzy variables is proposed in this paper, which can process complex realistic data more accurately and improve the feasibility and validity of bi-level programming models. To ensure the solvability of the model, the equivalent form of the bifuzzy–bilevel programming model is obtained by utilizing the expected value operator. According to the linear and nonlinear characteristics of the model, the Karush–Kuhn–Tucker condition and particle swarm optimization algorithm are employed to handle the problem, respectively. Finally, by taking the distribution center location problem of the supplier as an example, the bifuzzy–bilevel programming model is applied in practice to balance highly intricate customer demands and corporate cost minimization, obtaining the feasible solution of functions at the upper and lower levels, and the bifuzzy information in the problem can also be processed well, which proves the effectiveness of the proposed methodology.
Aiming at the evaluation of equipment competitive acquisition management, the paper proposes an evaluation method based on entropy theory. First, the concept of equipment competitive acquisition management entropy is defined. Second, the conceptual model, mathematical model, and evaluation index system of equipment competitive acquisition management entropy are constructed. Finally, taking policy and regulatory entropy as an example, the paper has calculated and analyzed its evaluation results to prove the effectiveness of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.