The outbreak of Zika virus (ZIKV) and associated fetal microcephaly mandates efforts to understand the molecular processes of infection. Related flaviviruses produce non-coding subgenomic flaviviral RNAs (sfRNAs) that are linked to pathogenicity in fetal mice. These viruses make sfRNAs by co-opting a cellular exoribonuclease using structured RNAs called xrRNAs. Here, we demonstrate that ZIKV infected monkey and human epithelial cells, mouse neurons, and mosquito cells produce sfRNAs. The RNA structure that is responsible for ZIKV sfRNA production forms a complex fold that is likely found in many pathogenic flaviviruses. Mutations that disrupt the structure affect exonuclease resistance in vitro and sfRNA formation during infection. The complete ZIKV xrRNA structure clarifies the mechanism of exonuclease resistance and identifies features that may modulate function in diverse flaviviruses.
Summary The Asian lineage of Zika virus (ZIKV) has recently caused epidemics and severe disease. Unraveling the mechanisms causing increased viral transmissibility and disease severity requires experimental systems. We report an infectious cDNA clone of ZIKV that was generated using a clinical isolate of the Asian lineage. The cDNA clone-derived RNA is infectious in cells, generating recombinant ZIKV. The recombinant virus is virulent in established ZIKV mouse models, leading to neurological signs relevant to human disease. Additionally, recombinant ZIKV is infectious for Aedes aegypti and thus provides a means to examine virus transmission. The infectious cDNA clone was further used to generate a luciferase ZIKV that exhibited sensitivity to a pan-flavivirus inhibitor, highlighting its potential utility for antiviral screening. This ZIKV reverse genetic system, together with mouse and mosquito infection models, may help identify viral determinants of human virulence and mosquito transmission, as well as inform vaccine and therapeutic strategies.
The current epidemic of Zika virus (ZIKV) has underscored the urgency to establish experimental systems for studying viral replication and pathogenesis, and countermeasure development. Here we report two ZIKV replicon systems: a luciferase replicon that can differentiate between viral translation and RNA synthesis; and a stable luciferase replicon carrying cell line that can be used to screen and characterize inhibitors of viral replication. The transient replicon was used to evaluate the effect of an NS5 polymerase mutation on viral RNA synthesis and to analyze a known ZIKV inhibitor. The replicon cell line was developed into a 96-well format for antiviral testing. Compare with virus infection-based assay, the replicon cell line allows antiviral screening without using infectious virus. Collectively, the replicon systems have provided critical tools for both basic and translational research.
Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425–428, 2016, https://doi.org/10.1038/nature17994). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.