Detection thresholds for spectral and temporal modulations are measured using broadband spectra with sinusoidally rippled profiles that drift up or down the log-frequency axis at constant velocities. Spectro-temporal modulation transfer functions (MTFs) are derived as a function of ripple peak density (Ω cycles/octave) and drifting velocity (ω Hz). The MTFs exhibit a low-pass function with respect to both dimensions, with 50% bandwidths of about 16 Hz and 2 cycles/octave. The data replicate (as special cases) previously measured purely temporal MTFs (Ω=0) [Viemeister, J. Acoust. Soc. Am. 66, 1364–1380 (1979)] and purely spectral MTFs (ω=0) [Green, in Auditory Frequency Selectivity (Plenum, Cambridge, 1986), pp. 351–359]. A computational auditory model is presented that exhibits spectro-temporal MTFs consistent with the salient trends in the data. The model is used to demonstrate the potential relevance of these MTFs to the assessment of speech intelligibility in noise and reverberant conditions.
ObjectiveTo investigate the dynamic functional connectivity of thalamocortical networks in interictal migraine patients and whether clinical features are associated with abnormal connectivity.MethodsWe investigated dynamic functional network connectivity (dFNC) of the migraine brain in 89 interictal migraine patients and 70 healthy controls. We focused on the temporal properties of thalamocortical connectivity using sliding window cross-correlation, clustering state analysis, and graph-theory methods. Relationships between clinical symptoms and abnormal dFNC were evaluated using a multivariate linear regression model.ResultsFive dFNC brain states were identified to characterize and compare dynamic functional connectivity patterns. We demonstrated that migraineurs spent more time in a strongly interconnected between-network state, but they spent less time in a sparsely connected state. Interestingly, we found that abnormal posterior thalamus (pulvinar nucleus) dFNC with the visual cortex and the precuneus were significantly correlated with headache frequency of migraine. Further topologic measures revealed that migraineurs had significantly lower efficiency of information transfer in both global and local dFNC.ConclusionOur results demonstrated a transient pathologic state with atypical thalamocortical connectivity in migraineurs and extended current findings regarding abnormal thalamocortical networks and dysrhythmia in migraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.