Background: Coronavirus disease 2019 (COVID-19) is posing a huge threat to human health worldwide. We aim to investigate the immune status of CD8 + T and NK cells in COVID-19 patients. Methods: The count and immune status of lymphocytes were detected by flow cytometry in 32 COVID-19 patients and 18 healthy individuals. Results: As the disease progression in COVID-19 patients, CD8 + T and NK cells were significantly decreased in absolute number but highly activated. After patients' condition improved, the count and immune status of CD8 + T and NK cells restored to some extent. GrA + CD8 + T and perforin + NK cells had good sensitivity and specificity for assisting diagnosis of COVID-19. Conclusions: As the disease progression, the declined lymphocytes in COVID-19 patients might lead to compensatory activation of CD8 + T and NK cells. GrA + CD8 + T and perforin + NK cells might be used as meaningful indicators for assisting diagnosis of COVID-19.
We report that phosphotyrosine–cholesterol conjugates effectively and selectively kill cancer cells, including platinum-resistant ovarian cancer cells. The conjugate increases the degree of noncovalent oligomerization upon enzymatic dephosphorylation in aqueous buffer. This enzymatic conversion also results in the assembly of the cholesterol conjugates inside and outside cells and leads to cell death. Preliminary mechanistic studies suggest that the formed assemblies of the conjugates not only interact with actin filaments and microtubules but also affect lipid rafts. As the first report of multifaceted supramolecular assemblies of cholesterol conjugates against cancer cells, this work illustrates the integration of enzyme catalysis and self-assembly of essential biological small molecules on and inside cancer cells as a promising strategy for developing multifunctional therapeutics to treat drug-resistant cancers.
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants’ action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants’ action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
BackgroundIn addition to the kidney, the intestine is one of the most important organs involved in uric acid excretion. However, the mechanism of urate excretion in the intestine remains unclear. Therefore, the relationship between soluble uric acid and the gut excretion in human intestinal cells was explored. The relevant signaling molecules were then also examined.MethodsHT-29 and Caco-2 cell lines were stimulated with soluble uric acid. Western blotting and qRT-PCR were used to measure protein and mRNA levels. Subcellular fractionation methods and immunofluorescence were used to quantify the proteins in different subcellular compartments. Flow cytometry experiments examined the function of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2). Small interfering RNA transfection was used to assess the interaction between ABCG2 and PDZ domain-containing 1 (PDZK1).ResultsSoluble uric acid increased the expression of PDZK1 and ABCG2. The stimulation of soluble uric acid also facilitated the translocation of ABCG2 from the intracellular compartment to the plasma membrane and increased its transport activity. Moreover, the upregulation of PDZK1 and ABCG2 by soluble uric acid was partially decreased by either TLR4-NLRP3 inflammasome inhibitors or PI3K/Akt signaling inhibitors. Furthermore, PDZK1 knockdown significantly inhibited the expression and transport activity of ABCG2 regardless of the activation by soluble uric acid, demonstrating a pivotal role for PDZK1 in the regulation of ABCG2.ConclusionsThese findings suggest that urate upregulates the expression of PDZK1 and ABCG2 for excretion in intestinal cells via activating the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway.Electronic supplementary materialThe online version of this article (10.1186/s13075-018-1512-4) contains supplementary material, which is available to authorized users.
BackgroundKlotho, is a transmembrane protein, performs as a circulating hormone and upstream modulator of the insulin-like growth factor-1 receptor (IGF-1R), fibroblast growth factor (FGF), and Wnt signaling pathways. These pathways are involved in the development and progression of B cell lymphoma. We aimed to explore the expression pattern and functional mechanism of Klotho in diffuse large B cell lymphoma (DLBCL).MethodsImmunohistochemistry (IHC) and western blotting were performed to detect the expression level of Klotho in DLBCL patients and cell lines. Tumor suppressive effect of Klotho was determined by both in vitro and in vivo studies. Signaling pathway activity was assessed by western blotting.ResultsRemarkable lower expression levels of Klotho were observed in DLBCL patients and cell lines. Enforced expression of Klotho could significantly induce cell apoptosis and inhibit tumor growth in DLBCL. Upregulation of Klotho resulted in declined activation of IGF-1R signaling, accompanied with decreased phosphorylation of its downstream targets, including AKT and ERK1/2. Moreover, xenograft model treated with either Klotho overexpression vector or recombinant human Klotho administration presented restrained tumor growth and lower Ki67 staining.ConclusionsOur findings establish that Klotho performs as a tumor suppressor and modulator of IGF-1R signaling in DLBCL. Targeting Klotho may provide novel strategies for future therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.