Correctly identifying sleep stages is essential for assessing sleep quality and treating sleep disorders. However, the current sleep staging methods have the following problems: (1) Manual or semi-automatic extraction of features requires professional knowledge, which is time-consuming and laborious. (2) Due to the similarity of stage features, it is necessary to strengthen the learning of features. (3) Acquisition of a variety of data has high requirements on equipment. Therefore, this paper proposes a novel feature relearning method for automatic sleep staging based on single-channel electroencephalography (EEG) to solve these three problems. Specifically, we design a bottom–up and top–down network and use the attention mechanism to learn EEG information fully. The cascading step with an imbalanced strategy is used to further improve the overall classification performance and realize automatic sleep classification. The experimental results on the public dataset Sleep-EDF show that the proposed method is advanced. The results show that the proposed method outperforms the state-of-the-art methods. The code and supplementary materials are available at GitHub: https://github.com/raintyj/A-novel-feature-relearning-method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.