BackgroundThe entomopathogenic mushroom Cordyceps militaris is an important medicinal and food resource owing to its various medicinal components and pharmacological effects. However, the high frequency of strain degeneration during subculture seriously restricts the large-scale production of C. militaris, and the mechanism underlying strain degeneration remains unclear. In this study, we artificially cultured C. militaris for six generations and compared changes during fruiting body growth. The transcriptome of six generations of C. militaris strains were sequenced with the Illumine Hiseq4000.ResultsThe subcultured C. militaris strains degenerated beginning at the third generation, with incomplete fruiting body growth beginning at the fourth generation. Over 9,015 unigenes and 731 new genes were identified. In addition, 35,323 alternative splicing (AS) events were detected in all samples, and more AS events occurred in the second, fourth and sixth generations. Compared with the first generation, the third generation (degenerated strain) included 2,498 differentially expressed genes (DEGs) including 1,729 up-regulated and 769 down-regulated genes. This number was higher than the number of DEGs in the second (1,892 DEGs), fourth (2,006 DEGs), fifth (2,273 DEGs) and sixth (2,188 DEGs) generations. Validation of RNA-seq by qRT-PCR showed that the expression patterns of 51 DEGs were in accordance with the transcriptome data.ConclusionOur results suggest that the mechanism of C. militaris strain degeneration is associated with gene involved in toxin biosynthesis, energy metabolism, and DNA methylation and chromosome remodeling.
Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.
The chemical composition and pharmacological effects of Cordyceps militaris are similar to those of Cordyceps sinensis, with the former undergoing greater development and utilization. Strain degeneration is a common phenomenon that occurs with high frequency during the subculturing of C. militaris, however, and the mechanism underlying strain degeneration remains unclear. In this study, we used touch‐down PCR to compare the ITS1 + 5.8S + ITS2, 18S, 28S and mating‐type (MAT) regions sequence of wild‐type and degenerated strains of C. militaris. We also used quantitative real‐time PCR to analyze expression levels of the CmMAT gene. Sequence analysis showed that the ITS1 + 5.8S + ITS2 and 28S regions of degenerated and wild‐type strains were completely identical, the 18S region of the degenerated strain contained seven single‐base mutations, including six base substitutions and one single‐base insertion. Compared with the wild‐type strain, the degenerated strain contained a deletion of the MAT1–2‐1 region, three base substitutions in the MAT1–1‐1 region, and a base substitution in the MAT1–1‐2 region that causes a glycine‐to‐valine amino acid substitution. Quantitative real‐time PCR analysis detected no CmMAT1–2‐1 gene expression in the degenerated strain, confirming the deletion of the CmMAT1–2‐1 gene. Expression levels of the CmMAT1–1‐1 and CmMAT1–1‐2 genes were significantly down‐regulated to only 7.5 % and 4.4 %, respectively, that of the wild‐type strain. These results indicate that 18S and MAT region mutations, as well as down‐regulated of CmMAT gene expression levels, may play important roles in C. militaris degeneration. This study provides a theoretical basis for further elucidation of the molecular mechanisms of C. militaris degeneration.
Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1114 differentially expressed genes in luminal A breast cancer and 1042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7, KIF18A, STIL, and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.
BACKGROUND Silk fibroin has attracted extensive attention due to its useful biological properties. However, in the regeneration process of silk fibroin, the need for highly concentrated neutral salt dissolution and long‐term dialysis greatly hinder the development of silk biomaterials. RESULTS A 3‐fold volume of isopropanol (IP) was added to one volume of 20% (w/v) silk fibroin solution dissolved in a CaCl2‐EtOH‐H2O ternary system (SFTS) to extract the protein. The extraction resulted in the precipitate consisted of aggregated silk fibroin in the SFTS. The extracted protein was easily resolubilised in water. Compared with the original dialysis time required for the SFTS, the dialysis time of the extracted protein was shortened by nearly half. When the SFTS was diluted with a 2.5‐fold volume of water, the same IP extraction resulted in the dialysis time being shortened by two thirds. SDS‐PAGE showed that IP extraction did not cause breakage of the silk peptide chain. FTIR and X‐ray diffraction indicated this extraction had no influence on the secondary structure of silk fibroin. CONCLUSION Excess IP extraction effectively accelerates the desalting and purification of fibroin in a CaCl2‐EtOH‐H2O ternary system without affecting the protein structure, thus greatly improving the regeneration efficiency of silk fibroin. © 2020 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.