Many luminescent stimuli responsive materials are based on fluorescence emission, while stimuli-responsive room temperature phosphorescent materials are less explored. Here, we show a kind of stimulus-responsive room temperature phosphorescence materials by the covalent linkage of phosphorescent chromophore of arylboronic acid and polymer matrix of poly(vinylalcohol). Attributed to the rigid environment offered from hydrogen bond and B-O covalent bond between arylboronic acid and poly(vinylalcohol), the yielded polymer film exhibits ultralong room temperature phosphorescence with lifetime of 2.43 s and phosphorescence quantum yield of 7.51%. Interestingly, the RTP property of this film is sensitive to the water and heat stimuli, because water could destroy the hydrogen bonds between adjacent poly(vinylalcohol) polymers, then changing the rigidity of this system. Furthermore, by introducing another two fluorescent dyes to this system, the color of afterglow with stimulus response effect could be adjusted from blue to green to orange through triplet-to-singlet Förster-resonance energy-transfer. Finally, due to the water/heat-sensitive, multicolor and completely aqueous processable feature for these three afterglow hybrids, they are successfully applied in multifunctional ink for anti-counterfeit, screen printing and fingerprint record.
Photoresponsive materials have drawn much attention and are widely applied in daily life for their reversible changes in luminous color or appearance color under light irradiation. In this work, a new photoresponsive system based on triarylamine derivatives is developed. With the changed aryl substituents, adjustable photoresponsive properties, including photoactivated phosphorescence and photochromism after being dispersed into the poly(methyl methacrylate) (PMMA) matrix, are demonstrated. According to the theoretical calculations and experimental data, the competition between the formations of triplet excitons and cationic radicals under photoirradiation should be the main reason for their different photoresponsive properties. Excitingly, the applications of rewritable photopatterning, anticounterfeiting, information encryption, and decryption are realized conveniently, in addition to the successful model of sunglasses to protect eyes away from ultraviolet radiation and strong light in the sunlight. These studies present a simple and efficient design strategy for the development of photoresponsive materials on modulating the phosphorescence and photochromic property.
The development of aqueous zinc metal batteries (AZMBs) is significantly impeded by the poor cycle stability of Zn anodes due to the uncontrolled dendrite growth and low Coulombic efficiency (CE). Herein, for the first time, SeO 2 additives are introduced into ZnSO 4 electrolyte to enhance the stability of the Zn anode. According to the experimental results, the protective ZnSe layer is initially in-situ formed on the Zn surface prior to the Zn plating, which acts as a shield for inhibiting the parasitic reactions and dendrite formation. Moreover, this additive strategy yields the unique characteristic of self-healing for recovering the cracks in the consequence of huge volume change, ensuring the durability of ZnSe layer. Consequently, Zn|Zn symmetric cell using SeO 2 additive delivers an enhanced cumulative plated capacity of 2.1 Ah cm −2 under practical test conditions, which far exceeds the previously reported works. Meanwhile, the average CE of 99.6% for 250 cycles is also demonstrated in Zn|Cu half cells with the presence of the SeO 2 additive. In addition, the positive effect of the SeO 2 additive is further illustrated in the Zn-MnO 2 full cells with a limited Zn.
Regulating the electrical double layer (EDL) structure via electrolyte additives is a promising strategy to improve the cycle stability of Zn anodes, but there are no general disciplines that can...
Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X(1)Σ(+), a(3)Π, and A(1)Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10(-3), R02 = 6.35 × 10(-4), and R03 = 2.05 × 10(-6)) for the A(1)Π1(ν(')=0)→X(1)Σ0(+) (+)(ν(″)=0) transition are determined. A sufficiently radiative lifetime τ (A(1)Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a(3)Π0(+) →X(1)Σ0(+) (+), a(3)Π1→X(1)Σ0(+) (+), A(1)Π1 → a(3)Π0(+) , and A(1)Π1 → a(3)Π1 transitions are particularly small (∼10 s(-1)-650 s(-1)). The calculated vibrational branching loss ratio to the intermediate a(3)Π0(+) and a(3)Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.