In this article, we propose the log-linear model-based multifactor dimensionality reduction (LM MDR) method to improve the MDR in classifying sparse or empty cells. The LM MDR method estimates frequencies for empty cells from a parsimonious log-linear model so that they can be assigned to high-and low-risk groups. In addition, LM MDR includes MDR as a special case when the saturated log-linear model is fitted. Simulation studies show that the LM MDR method has greater power and smaller error rates than the MDR method. The LM MDR method is also compared with the MDR method using as an example sporadic Alzheimer's disease.
Cryogenic computing, which runs a computer device at an extremely low temperature, is promising thanks to its significant reduction of wire resistance as well as leakage current. Recent studies on cryogenic computing have focused on various architectural units including the main memory, cache, and CPU core running at 77K. However, little research has been conducted to fully exploit the fast cryogenic wires, even though the slow wires are becoming more serious performance bottleneck in modern processors. In this paper, we propose a CPU microarchitecture which extensively exploits the fast wires at 77K. For this goal, we first introduce our validated cryogenic-performance models for the CPU pipeline and network on chip (NoC), whose performance can be significantly limited by the slow wires. Next, based on the analysis with the models, we architect CryoSP and CryoBus as our pipeline and NoC designs to fully exploit the fast wires. Our evaluation shows that our cryogenic computer equipped with both microarchitectures achieves 3.82 times higher system-level performance compared to the conventional computer system thanks to the 96% higher clock frequency of CryoSP and five times lower NoC latency of CryoBus.
CCS CONCEPTS• Computer systems organization → Superscalar architectures; Pipeline computing; Multicore architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.