As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
With economic development, environmental problems are becoming more and more prominent, and achieving green chemistry is an urgent task nowadays, which creates an opportunity for the development of supercritical foaming technology. The foaming agents used in supercritical foaming technology are usually supercritical carbon dioxide (ScCO2) and supercritical nitrogen (ScN2), both of which are used without environmental burden. This technology can reduce the environmental impact of polymer foam production. Although supercritical foaming technology is already in production in some fields, it has not been applied on a large scale. Here, we present a detailed analysis of the types of foaming agents currently used in supercritical foaming technology and their applications in various fields, summarizing the technological improvements that have been made to the technology. However, we have found that today’s supercritical technologies still need to address some additional challenges to achieve large-scale production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.