Background: The triglyceride glucose (TyG) index, a simple surrogate estimate of insulin resistance, has been demonstrated to predict cardiovascular (CV) disease morbidity and mortality in the general population and many patient cohorts. However, to our knowledge, the prognostic usefulness of the TyG index after percutaneous coronary intervention (PCI) in patients with type 2 diabetes mellitus (T2DM) and acute coronary syndrome (ACS) has not been determined. This study aimed to evaluate the association of the TyG index with adverse CV outcomes in patients with T2DM and ACS who underwent PCI. Methods: The TyG index was calculated using the formula ln[fasting triglycerides (mg/dL) × fasting glucose (mg/ dL)/2]. The primary endpoint was the composite of all-cause mortality, non-fatal stroke, non-fatal myocardial infarction, or unplanned repeat revascularization. The association between the TyG index and adverse CV outcomes was assessed by Cox proportional hazards regression analysis. Results: In total, 776 patients with T2DM and ACS who underwent PCI (mean age, 61 ± 10 years; men, 72.2%) were included in the final analysis. Over a median follow-up of 30 months, 188 patients (24.2%) had at least 1 primary endpoint event. The follow-up incidence of the primary endpoint rose with increasing TyG index tertiles. The multivariate Cox proportional hazards regression analysis adjusted for multiple confounders revealed a hazard ratio for the primary endpoint of 2.17 (95% CI 1.45-3.24; P for trend = 0.001) when the highest and lowest TyG index tertiles were compared. Conclusions: The TyG index was significantly and positively associated with adverse CV outcomes, suggesting that the TyG index may be a valuable predictor of adverse CV outcomes after PCI in patients with T2DM and ACS.
Background: The relationship between triglyceride-glucose index (TyG index) and the prevalence and prognosis of cardiovascular disease has been confirmed by former studies. However, it remains uncertain whether TyG index has a prognostic impact in patients with type 2 diabetes mellitus (T2DM) and non-ST-segment elevation acute coronary syndrome (NSTE-ACS) undergoing percutaneous coronary intervention (PCI). Methods: The study retrospectively enrolled 798 patients (mean age: 60.9 ± 8.3 years; 68.3% men) with T2DM and NSTE-ACS who underwent PCI at Beijing Anzhen Hospital from January to December 2015. TyG index was calculated as previously reported: ln [fasting TGs (mg/dL) * FBG (mg/dL)/2]. The primary endpoint was a composite of adverse events as follows: all-cause death, non-fatal myocardial infarction (MI) and ischemia-driven revascularization. Results: TyG index was significantly higher in patients with a primary endpoint event compared with those without. Multivariate Cox proportional hazards analysis showed that 1-unit increase of TyG index was independently associated with higher risk of primary endpoint, independent of other risk factors [hazard ratio (HR) 3.208 per 1-unit increase, 95% confidence interval (CI) 2.400-4.289, P < 0.001]. The addition of TyG index to a baseline risk model had an incremental effect on the predictive value for adverse prognosis [AUC: baseline risk model, 0.800 vs. baseline risk model + TyG index, 0.856, P for comparison < 0.001; category-free net reclassification improvement (NRI) 0.346, P < 0.001; integrated discrimination improvement (IDI) 0.087, P < 0.001]. Conclusions: Increased TyG index is a significant predictor of adverse prognosis in patients with T2DM and NSTE-ACS undergoing PCI. Further studies need to be performed to determine whether interventions for TyG index have a positive impact on improving clinical prognosis.
Aim: The triglyceride-glucose index (TyG index) is proposed as a surrogate parameter for insulin resistance (IR) and, when elevated, is related to increased cardiovascular risks. Whether the TyG index is of great value in predicting adverse prognosis for individuals diagnosed with non-ST-segment elevation acute coronary syndrome (NSTE-ACS), who received elective percutaneous coronary intervention (PCI), and without recognized diabetes remains unclear. Methods: Overall, 1,510 subjects diagnosed with NSTE-ACS, who received elective PCI, and without recognized diabetes were enrolled in the current study. All participants received a routine follow-up after discharge. The TyG index was obtained from the following equation: napierian logarithmic (ln) [fasting triglyceride (TG, mg/dL)×fasting blood glucose (FBG, mg/dL)/2]. Adverse cardiovascular events included all-cause death, nonfatal myocardial infarction (MI), nonfatal ischemic stroke, and ischemia-driven revascularization, composite of which was defined as the primary endpoint. Results: Overall, 316 (20.9%) endpoint events were documented during a 48-month follow-up. Despite adjusting for confounding variates, the TyG index remains to be a significant risk predictor for the primary endpoint, with a hazard ratio (HR) [95% confidence interval (CI)] of 2.433 (1.853-3.196) ( P <0.001). A significant enhancement on the predictive performance for the primary endpoint emerged when adding the TyG index into a baseline model [area under the receiver-operating characteristic (ROC) curve (AUC), 0.835 for baseline model vs. 0.853 for baseline model+TyG index, P <0.001; net reclassification improvement (NRI), 0.194, P <0.001; integrated discrimination improvement (IDI), 0.023, P =0.007]. Conclusions: The TyG index is an independent risk predictor for adverse cardiovascular events in nondiabetic subjects diagnosed with NSTE-ACS and who received elective PCI. Further prospective studies are needed to verify these findings.
Background Insulin resistance (IR), evaluation of which is difficult and complex, is closely associated with cardiovascular disease. Recently, various IR surrogates have been proposed and proved to be highly correlated with IR assessed by the gold standard. It remains indistinct whether different IR surrogates perform equivalently on prognostic prediction and stratification following percutaneous coronary intervention (PCI) in non-ST-segment elevation acute coronary syndrome (NSTE-ACS) patients with and without type 2 diabetes mellitus (T2DM). Methods The present study recruited patients who were diagnosed with NSTE-ACS and successfully underwent PCI. IR surrogates evaluated in the current study included triglyceride-glucose (TyG) index, visceral adiposity index, Chinese visceral adiposity index, lipid accumulation product, and triglyceride-to-high density lipoprotein cholesterol ratio, calculations of which were conformed to previous studies. The observational endpoint was defined as the major adverse cardiovascular and cerebrovascular events (MACCE), including cardiac death, non-fatal myocardial infarction, and non-fatal ischemic stroke. Results 2107 patients (60.02 ± 9.03 years, 28.0% female) were ultimately enrolled in the present study. A total of 187 (8.9%) MACCEs were documented during the 24-month follow-up. Despite regarding the lower median as reference [hazard ratio (HR) 3.805, 95% confidence interval (CI) 2.581–5.608, P < 0.001] or evaluating 1 normalized unit increase (HR 1.847, 95% CI 1.564–2.181, P < 0.001), the TyG index remained the strongest risk predictor for MACCE, independent of confounding factors. The TyG index showed the most powerful diagnostic value for MACCE with the highest area under the receiver operating characteristic curve of 0.715. The addition of the TyG index, compared with other IR surrogates, exhibited the maximum enhancement on risk stratification for MACCE on the basis of a baseline model (Harrell’s C-index: 0.708 for baseline model vs. 0.758 for baseline model + TyG index, P < 0.001; continuous net reclassification improvement: 0.255, P < 0.001; integrated discrimination improvement: 0.033, P < 0.001). The results were consistent in subgroup analysis where similar analyses were performed in patients with and without T2DM, respectively. Conclusion The TyG index, which is most strongly associated with the risk of MACCE, can be served as the most valuable IR surrogate for risk prediction and stratification in NSTE-ACS patients receiving PCI, with and without T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.