The emergence of antimicrobial resistance in Klebsiella spp., including resistance to extended-spectrum cephalosporins (ESC) and fluoroquinolones, is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance in a total of 103 Klebsiella spp. isolates, consisting of Klebsiella pneumoniae complex (KP, n = 89) and K. oxytoca (KO, n = 14) from clinical specimens of dogs and cats in Japan. Furthermore, we characterized the resistance mechanisms, including extended-spectrum β-lactamase (ESBL), plasmid-mediated AmpC β-lactamase (PABL), and plasmid-mediated quinolone resistance (PMQR); and assessed genetic relatedness of ESC-resistant Klebsiella spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated that resistance rates to ampicillin, cephalothin, enrofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole, cefotaxime, gentamicin, tetracycline, chloramphenicol, amoxicillin-clavulanic acid, and cefmetazole were 98.1, 37.9, 37.9, 35.9, 35.0, 34.0, 31.1, 30.1, 28.2, 14.6, and 6.8%, respectively. Phenotypic testing detected ESBLs and/or AmpC β-lactamases in 31 of 89 (34.8%) KP isolates, but not in KO isolates. Resistances to 5 of the 12 antimicrobials tested, as well as the three PMQRs [qnrB, qnrS, and aac(6′)-Ib-cr], were detected significantly more frequently in ESBL-producing KP, than in non-ESBL-producing KP and KO. The most frequent ESBL was CTX-M-15 (n = 13), followed by CTX-M-14 (n = 7), CTX-M-55 (n = 6), SHV-2 (n = 5), CTX-M-2 (n = 2), and CTX-M-3 (n = 2). Based on the rpoB phylogeny, all ESBL-producing strains were identified as K. pneumoniae, except for one CTX-M-14-producing strain, which was identified as K. quasipneumoniae. All of AmpC β-lactamase positive isolates (n = 6) harbored DHA-1, one of the PABLs. Based on MLST and PFGE analysis, ST15 KP clones producing CTX-M-2, CTX-M-15, CTX-M-55, and/or SHV-2, as well as KP clones of ST1844-CTX-M-55, ST655-CTX-M-14, and ST307-CTX-M-15, were detected in one or several hospitals. Surprisingly, specific clones were detected in different patients at an interval of many months. These results suggest that multidrug-resistant ESBL-producing KP were clonally disseminated among companion animals via not only direct but also indirect transmission. This is the first report on large-scale monitoring of antimicrobial-resistant Klebsiella spp. isolates from companion animals in Japan.
The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6’)-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates of Enterobacter spp. from companion animals in Japan.
Large-scale monitoring of resistance to 14 antimicrobial agents was performed using 103 Proteus mirabilis strains isolated from dogs in Japan. Resistant strains were analysed to identify their resistance mechanisms. Rates of resistance to chloramphenicol, streptomycin, enrofloxacin, trimethoprim/sulfamethoxazole, kanamycin, ampicillin, ciprofloxacin, cephalothin, gentamicin, cefoxitin and cefotaxime were 20. 4, 15.5, 12.6, 10.7, 9.7, 8.7, 5.8, 2.9, 2.9, 1.9 and 1.9 %, respectively. No resistance to ceftazidime, aztreonam or imipenem was found. Class 1 and 2 integrases were detected in 2.9 and 11.7 % of isolates, respectively. Class 1 integrons contained aadB or aadB-catB-like-bla OXA10 -aadA1, whereas those of class 2 contained sat-aadA1, dhfr1-sat-aadA1 or none of the anticipated resistance genes. Of five distinct plasmid-mediated quinolone-resistance (PMQR) genes, only qnrD gene was detected in 1.9 % of isolates. Quinolone-resistance determining regions (QRDRs) of gyrA and parC from 13 enrofloxacinintermediate and -resistant isolates were sequenced. Seven strains had double mutations and three had single mutations. Three of nine ampicillin-resistant isolates harboured AmpC-type blactamases (i.e. bla CMY-2 , bla CMY-4 and bla DHA-1 ). These results suggest that canine Proteus mirabilis deserves continued surveillance as an important reservoir of antimicrobial resistance determinants. This is the first report, to our knowledge, describing integrons, PMQRs and QRDR mutations in Proteus mirabilis isolates from companion animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.