It is challenging to explore a unified solution for the treatment of oily wastewater from complex sources. Thus, membrane materials with flexible separation schemes are highly desired. Herein, we fabricated a smart membrane by electrospinning TiO2 doped polyvinylidene fluoride (PVDF) nanofibers. The as-formed beads-on-string structure and hierarchical roughness of the nanofibers contribute to its superwetting/resisting property to liquids, which is desirable in oil/water separation. Switched simply by UV (or sunlight) irradiation and heating treatment, the smart membrane can realize reversible separation of oil/water mixtures by selectively allowing water or oil to pass through alone. Most importantly, the as-prepared nanofiber membrane possesses outstanding antifouling and self-cleaning performance resulting from the photocatalytic property of TiO2, which has practical significance in saving solvents and recycling materials. This work provides a route for fabricating cost-effective, easily scaled up, and recyclable membranes for on-demand oil/water separation in versatile situations, which can be of great usage in the new green separation technology.
A flexible slippery membrane (FSM) with tunable morphology and high elastic deformability has been developed by infusing perfluoropolyether (PFPE) into a fluorinated-copolymer-modified thermoplastic polyurethane (TPU) nanofiberous membrane. To immobilize PFPE in TPU matrix, we synthesized a fluorinated-copolymer poly(DFMA-co-IBOA-co-LMA) with low surface energy, high chemical affinity to PFPE, adequate flexibility, and strong physical adhesion on TPU. Upon external tensile stress, the as-prepared FSM can realize a real-time manipulation of water sliding and coalescence on it. Furthermore, it exhibits the ability to preserve the captured water from being blown away by strong wind, which ensures the water collection efficiency in windy regions.
Using alkaline pH adjustment, the reaction between graphene oxide and L-ascorbic acid led to the formation of a carbocatalyst film with numerous graphene edges protruding out of basal planes, which had a markedly enhanced carbocatalytic activity for conversion of 4-nitrophenol to 4-aminophenol, as compared to that of the carbocatalyst counterpart without involving pH mediation.
Fluorinated hyperbranched polyimide (FHBPI), a spherical polymer with large space volumes, was developed to enhance fluorinated linear copolyimide (FPI) in terms of mechanical, UV-shielding, and hydrophobic properties via simple blend and thermal imidization methods. FPI possessed superior compatibility with FHBPI, and no obvious phase separation was found. The incorporation of FHBPI led to the formation of physical crosslinked network between FPI and FHBPI, which markedly improved the mechanical properties of the FPI, resulting in maximum enhancement of 83% in tensile strength from 71.7 Mpa of the pure FPI to 131.4 Mpa of the FPI/FHBPI composite film containing 15 wt % of FHBPI. The introduction of FHBPI also changed the surface properties of composites from hydrophilicity to hydrophobicity, which endowed them with outstanding dielectric stability. Meanwhile, the thin FPI/FHBPI composites kept the high transparency in the visible spectrum, simultaneously showing enhanced UV-shielding properties and lifetimes under intense UV ray. This was attributed to the newly formed charge transfer complex (CTC) between FHBPI and FPI. Moreover, the FPI/FHBPI composites possessed preeminent thermal properties. The properties, mentioned above, gave the composites enormous potential for use as UV-shielding coatings in an environment filled with high temperatures and strong ultraviolet rays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.