Mutations of the IL2RG gene, which encodes for the interleukin-2 receptor common gamma chain (γC, CD132), can lead to X-linked severe combined immunodeficiency (X-SCID) associated with a T−B+NK− phenotype as a result of dysfunctional γC-JAK3-STAT5 signaling. Lately, hypomorphic mutations of the IL2RG gene have been described causing atypical SCID with a milder phenotype. Here, we report three brothers with low-normal lymphocyte counts and susceptibility to recurrent respiratory infections and cutaneous warts. The clinical presentation combined with dysgammaglobulinemia suspected an inherited immunity disorder, which has been proven by Next Generation Sequencing as a novel c.458T > C; p.Ile153Thr IL2RG missense-mutation. Subsequent functional characterization revealed impaired T-cell proliferation, low TREC levels and a skewed TCR Vβ repertoire in all three patients. Interestingly, investigation of various subpopulations showed normal expression of CD132 but with partially impaired STAT5 phosphorylation compared to healthy controls. Additionally, we performed precise genetic analysis of subpopulations revealing spontaneous somatic reversion, predominately in lymphoid derived CD3+, CD4+ and CD8+ T cells. Our data demonstrate that the atypical SCID phenotype noticed in these three brothers is due to the combination of hypomorphic IL-2RG function and somatic reversion.
Acute myeloid leukemia (AML) and B-cell acute lymphocytic leukemia (B-ALL) are severe blood malignancies affecting both adults and children. Chimeric antigen receptor (CAR)-based immunotherapies have proven highly efficacious in the treatment of leukemia. However, the challenge of the immune escape of cancer cells remains. The development of more affordable and ready-to-use therapies is essential in view of the costly and time-consuming preparation of primary cell-based treatments. In order to promote the antitumor function against AML and B-ALL, we transduced NK−92 cells with CD276-CAR or CD19-CAR constructs. We also attempted to enhance cytotoxicity by a gene knockout of three different inhibitory checkpoints in NK cell function (CBLB, NKG2A, TIGIT) with CRISPR-Cas9 technology. The antileukemic activity of the generated cell lines was tested with calcein and luciferase-based cytotoxicity assays in various leukemia cell lines. Both CAR-NK−92 exhibited targeted cytotoxicity and a significant boost in antileukemic function in comparison to parental NK−92. CRISPR-Cas9 knock-outs did not improve B-ALL cytotoxicity. However, triple knock-out CD276-CAR-NK−92 cells, as well as CBLB or TIGIT knock-out NK−92 cells, showed significantly enhanced cytotoxicity against U−937 or U−937 CD19/tag AML cell lines. These results indicate that the CD19-CAR and CD276-CAR-NK−92 cell lines’ cytotoxic performance is suitable for leukemia killing, making them promising off-the-shelf therapeutic candidates. The knock-out of CBLB and TIGIT in NK−92 and CD276-CAR-NK−92 should be further investigated for the treatment of AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.