The separation of oil from oily water is an important pursuit because of increasing worldwide oil pollution. Separation by the use of materials with selective oil/water absorption is a relatively recent area of development, yet highly promising. Owing to their selective superantiwetting/superwetting properties towards water and oil, superhydrophobic/superoleophilic surfaces and underwater superoleophobic surfaces have been developed for the separation of oil/water-free mixtures and emulsions. In this Review, after a short introduction to oil/water separation, we describe the principles of materials with selective oil/water absorption and outline recent advances in oil/water separation with superwetting/superantiwetting materials, including their design, their fabrication, and models of experimental setups. Finally, we discuss the current state of this new field and point out the remaining problems and future challenges.
A major scientific challenge of the past decade pertaining to the field of soft matter has been to craft 'adaptable' materials, inspired by nature, which can dynamically alter their structure and functionality on demand, in response to triggers produced by environmental changes. Amongst these, 'smart' surfactant wormlike micelles, responsive to external stimuli, are a particularly recent area of development, yet highly promising, given the versatility of the materials but simplicity of the design-relying on small amphiphilic molecules and their spontaneous self-assembly. The switching 'on' and 'off' of the micellar assembly structures has been reported using electrical, optical, thermal or pH triggers and is now envisaged for multiple stimuli. The structural changes, in turn, can induce major variations in the macroscopic characteristics, affecting properties such as viscosity and elasticity and sometimes even leading to a spontaneous and effective 'sol-gel' transition. These original smart materials based on wormlike micelles have been successfully used in the oil industry, and offer a significant potential in a wide range of other technological applications, including biomedicine, cleaning processes, drag reduction, template synthesis, to name but a few. This review will report results in this field published over the last few years, describe the potential and practical applications of stimuli-responsive wormlike micelles and point out future challenges.
Recent research has highlighted a growing focus on stimuli-responsive surfactant wormlike micelles (WLMs), particularly those with switchability. Here we report CO2-switchable WLMs based on the commercial anionic surfactant sodium dodecyl sulfate (SDS) and N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA) mixed in a mole ratio of 2:1. When CO2 is bubbled into an aqueous mixture of these reactants, the TMPDA molecules are protonated to form quaternary ammonium species, two of which in the same protonated TMPDA molecule "bridge" two SDS molecules by noncovalent electrostatic attraction, behaving like a pseudogemini surfactant and forming viscoelastic WLMs as verified by cryo-TEM. Upon removal of CO2, the quaternized spacers are deprotonated back to tertiary amines, dissociating the pseudogeminis back to conventional SDS molecules that form low-viscosity spherical micelles. Such a reversible sphere-to-worm transition could be repeated several cycles without a loss of response to CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.