This paper presents Game Adaptive Virtual Reality Rehabilitation (GAVRe 2), a framework to augment upper limb rehabilitation using Virtual Reality (VR) gamification and haptic robotic manipulator feedback. GAVRe 2 integrates independent systems in a modular fashion, connecting patients with therapists remotely to increase patient engagement during rehabilitation. GAVRe 2 exploits VR capabilities to not only increase the productivity of therapists administering rehabilitation, but also to improve rehabilitation mobility for patients. Conventional rehabilitation requires face-to-face physical interactions in a clinical setting which can be inconvenient for patients. The GAVRe 2 approach provides an avenue for rehabilitation in a domestic setting by remotely customizing a routine for the patient. Results are then reported back to therapists for data analysis and future training regime development. GAVRe 2 is evaluated experimentally through a system that integrates a popular VR system, a RGB-D camera, and a collaborative industrial robot, with results indicating potential benefits for long-term rehabilitation and the opportunity for upper limb rehabilitation in a domestic setting.
This paper presents a probabilistic framework for online tracking of nodes along deformable linear objects. The proposed framework does not require an a-priori model; instead, a Bayesian Committee Machine, starting as a tabula rasa, accumulates knowledge over time. The key benefits of this approach are a lack of reliance upon extensive pre-training data, which can be difficult to obtain in sufficiently large quantities, and the ability for robust estimation of nodes subject to occlusion. Another benefit is that the uncertainties obtained during inference from the underlying Gaussian Processes can be beneficial towards subsequent handling tasks. Comparisons of the non-time series framework were conducted against conventional regression models to measure the efficacy of the proposed framework.
As robotic systems transition from traditional setups to collaborative work spaces, the prevalence of physical Human Robot Interaction has risen in both industrial and domestic environments. A popular representation for robot behavior is movement primitives which learn, imitate, and generalize from expert demonstrations. While there are existing works in context-aware movement primitives, they are usually limited to contact-free human robot interactions. This paper presents physical Human Robot Interaction Primitives (pHRIP), which utilize only the interaction forces between the human user and robot to estimate user intent and generate the appropriate robot response during physical human robot interactions. The efficacy of pHRIP is evaluated through multiple experiments based on target-directed reaching and obstacle avoidance tasks using a real seven degree of freedom robot arm. The results are validated against Interaction Primitives which use observations of robotic trajectories, with discussions of future pHRI applications utilizing pHRIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.