Preferred crystallographic orientation (texture) in thin films of technologically important materials frequently has a strong effect on the properties of these films and is important for stable surface properties. The deposition of organized molecular films of a poly‐perfluorodecylacrylate, poly‐(1H,1H,2H,2H‐perfluorodecyl acrylate) (p‐PFDA), by initiated chemical vapor deposition (iCVD) is described. The tendency of p‐PFDA to crystallize in a smectic B phase has been reported in films prepared from solution but not for those using a CVD technique. The degree of crystallinity and the preferred orientation of the perfluoro side chains, either parallel or perpendicular to the surface, are controlled by tuning the CVD process parameters (i.e., initiator to monomer flow rate ratio, filament temperature, and substrate temperature). Films with no observable X‐ray diffraction patterns are also achieved. The observed differences in crystal texture strongly impact the observed water contact angles (150° to 130°, advancing) and corresponding hysteresis behavior. Low hysteresis (<7°) is associated with high crystallinity, particularly when the orientation of the crystallites resulted in the perfluoro side groups being oriented parallel to the surface. The latter texture resulted in smoother film than the texture with the chains oriented perpendicular to the surface and this can be very advantageous for applications in which relatively smooth but still crystalline films are needed.
Clusters of methanol and ethanol formed above neat liquid samples were entrained in a supersonic jet of helium and probed in the expansion using 118 nm vacuum ultraviolet laser single-photon ionization/time-of-flight (TOF) mass spectrometry. Almost every cluster ion observed in the TOF mass spectra could be represented by the formula H(ROH)n+, where R=CH3 or C2H5, and n=1–5. Formation of these species is attributed to a well-established ionization pathway where each protonated (n−1)-mer originates from its n-mer neutral parent. Signals in the TOF mass spectra due to the protonated trimers H(CH3OH)3+ and H(CH3CH2OH)3+ were found to be the most intense and provides direct evidence that these particular cluster ions are “magic-number” structures. The possible relationships between the observed ion data and the neutral cluster vapor phase distributions are discussed. In this context, methanol and ethanol vapor cluster distributions at 298.15 K and at several pressures⩾the equilibrium vapor pressure were computed using the grand canonical Monte Carlo and molecular dynamics techniques. Lastly, differences between these experiments and the results of bimolecular reaction studies are discussed.
This report describes the preparation of superhydrophobic and oleophobic surfaces by grafting of poly(perfluorodecylacrylate) chains with initiated chemical vapor deposition on silicon substrates. The grafting enhances the formation of a semicrystalline phase. The crystalline structures reduce the polymer chain mobility, resulting in nonwetting surfaces with both water and mineral oil. On the contrary, the same contacting liquid easily wets the amorphous ungrafted polymer.
To study the effect of an Si-Si bond on gas-phase reaction chemistry in the hot-wire chemical vapor deposition (HWCVD) process with a single source alkylsilane molecule, soft ionization with a vacuum ultraviolet wavelength of 118 nm was used with time-of-flight mass spectrometry to examine the products from the primary decomposition of hexamethyldisilane (HMDS) on a heated tungsten (W) filament and from secondary gas-phase reactions in a HWCVD reactor. It is found that both Si-Si and Si-C bonds break when HMDS decomposes on the W filament. The dominance of the breakage of Si-Si over Si-C bond has been demonstrated. In the reactor, the abstraction of methyl and H atom, respectively, from the abundant HMDS molecules by the dominant primary trimethylsilyl radicals produces tetramethylsilane (TMS) and trimethylsilane (TriMS). Along with TMS and TriMS, various other alkyl-substituted silanes (m/z = 160, 204, 262) and silyl-substituted alkanes (m/z = 218, 276, 290) are also formed from radical combination reactions. With HMDS, an increasing number of Si-Si bonds are found in the gas-phase reaction products aside from the Si-C bond which has been shown to be the major bond connection in the products when TMS is used in the same reactor. Three methyl-substituted 1,3-disilacyclobutane species (m/z = 116, 130, 144) are present in the reactor with HMDS, suggesting a more active involvement from the reactive silene intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.