BackgroundThe application of hydroxyethyl starch (HES) for volume resuscitation is controversially discussed and clinical studies have suggested adverse effects of HES substitution, leading to increased patient mortality. Although, the intestine is of high clinical relevance and plays a crucial role in sepsis and inflammation, information about the effects of HES on intestinal function and barrier integrity is very scarce. We therefore evaluated the effects of clinically relevant concentrations of HES on intestinal function and barrier integrity employing an isolated perfused model of the mouse small intestine.MethodsAn isolated perfused model of the mouse small intestine was established and intestines were vascularly perfused with a modified Krebs-Henseleit buffer containing 3% Albumin (N=7) or 3% HES (130/0.4; N=7). Intestinal metabolic function (galactose uptake, lactate-to-pyruvate ratio), edema formation (wet-to-dry weight ratio), morphology (histological and electron microscopical analysis), fluid shifts within the vascular, lymphatic and luminal compartments, as well as endothelial and epithelial barrier permeability (FITC-dextran translocation) were evaluated in both groups.ResultsCompared to the Albumin group, HES perfusion did not significantly change the wet-to-dry weight ratio and lactate-to-pyruvate ratio. However, perfusing the small intestine with 3% HES resulted in a significant loss of vascular fluid (p<0.01), an increased fluid accumulation in the intestinal lumen (p<0.001), an enhanced translocation of FITC-dextran from the vascular to the luminal compartment (p<0.001) and a significantly impaired intestinal galactose uptake (p<0.001). Morphologically, these findings were associated with an aggregation of intracellular vacuoles within the intestinal epithelial cells and enlarged intercellular spaces.ConclusionA vascular perfusion with 3% HES impairs the endothelial and epithelial barrier integrity as well as metabolic function of the small intestine.
Background Remote ischemic preconditioning (RIPC) is a phenomenon, whereby repeated, non-lethal episodes of ischemia to an organ or limb exert protection against ischemia–reperfusion (I/R) injury in distant organs. Despite intensive research, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms, especially in the intestine. Aim of this study was to evaluate possible protective effects RIPC on intestinal I/R injury. Methods Thirty rats were randomly assigned to four groups: I/R; I/R + RIPC; Sham; Sham + RIPC. Animals were anesthetized and the superior mesenteric artery was clamped for 30 min, followed by 60 min of reperfusion. RIPC-treated rats received 3 × 5 min of bilateral hindlimb I/R prior to surgery, sham groups obtained laparotomy without clamping. After I/R injury serum/tissue was analyzed for: Mucosal damage, Caspase-3/7 activity, expression of cell stress proteins, hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) production, Hypoxia-inducible factor-1α (HIF-1α) protein expression and matrix metalloproteinase (MMP) activity. Results Intestinal I/R resulted in increased mucosal injury (P < 0.001) and elevated Caspase-3/7 activity (P < 0.001). RIPC significantly reduced the histological signs of intestinal I/R injury (P < 0.01), but did not affect Caspase-3/7 activity. Proteome profiling suggested a RIPC-mediated regulation of several cell stress proteins after I/R injury: Cytochrome C (+ 157%); Cited-2 (− 39%), ADAMTS1 (+ 74%). Serum concentrations of H 2 O 2 and MDA remained unchanged after RIPC, while the reduced intestinal injury was associated with increased HIF-1α levels. Measurements of MMP activities in serum and intestinal tissue revealed an attenuated gelatinase activity at 130 kDa within the serum samples (P < 0.001) after RIPC, while the activity of MMPs within the intestinal tissue was not affected by I/R injury or RIPC. Conclusions RIPC ameliorates intestinal I/R injury in rats. The underlying mechanisms may involve HIF-1α protein expression and a decreased serum activity of a 130 kDa factor with gelatinase activity. Electronic supplementary material The online version of this article (10.1186/s12967-019-1885-4) contains supplementary material, which is available to authorized users.
BackgroundVolume resuscitation with hydroxyethyl starch (HES) is controversially discussed and we recently showed that HES perfusion impairs endothelial and epithelial intestinal barrier integrity. Here we investigated whether Albumin containing HES solutions are superior to HES alone in maintaining intestinal barrier function.MethodsAn isolated perfused model of the mouse small intestine was used to investigate the effects of: (i) 3 % Albumin (Alb), (ii) 3 % HES or (iii) 1.5 % HES/1.5 % Albumin (HES/Alb). Intestinal morphology, cell damage, metabolic functions, fluid shifts and endothelial/epithelial barrier permeability were evaluated. Potentially involved signaling mechanisms (Erk1/2, Akt and Stat5 phosphorylation) were screened.ResultsHES induced histomorphological damage (p < 0.01 vs. Alb), by trend elevated the amount of luminal intestinal fatty acid binding protein and reduced galactose uptake (p < 0.001 vs. Alb). Luminal and lymphatic flow rates were increased (p < 0.001 vs. Alb), while vascular flow was decreased (p < 0.001 vs. Alb) during HES perfusion. HES also increased the vascular to luminal FITC-dextran transfer (p < 0.001 vs. Alb), pointing towards a fluid shift from the vascular to the luminal and lymphatic compartments during HES perfusion. Addition of Alb (HES/Alb) reversed all adverse effects of HES (p < 0.05 vs. HES), restored barrier integrity (p < 0.05 vs. HES) and improved metabolic function of the intestine (p < 0.001 vs. HES; p < 0.05 vs. Alb). Mechanistically, HES/Alb perfusion resulted in an increased phosphorylation of Erk1/2 and Akt kinases (p < 0.001 vs. HES), while Stat5 remained unchanged.ConclusionsAlbumin supplementation abrogates the adverse effects of HES in the intestine and underlying mechanism may function via phosphorylation of Erk1/2 and Akt. Albumin containing HES solutions are superior to HES alone and may improve the suitability of HES in the clinic.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-016-0810-3) contains supplementary material, which is available to authorized users.
Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments – while effective against hypertension and oedema – bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.