Thiazolidinediones (TZDs) reduce insulin resistance in type 2 diabetes by increasing peripheral uptake of glucose, and they bind to and activate the transcriptional factor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Studies have suggested that TZD-induced activation of PPAR-gamma correlates with antidiabetic action, but the mechanism by which the activated PPAR-gamma is involved in reducing insulin resistance is not known. To examine whether activation of PPAR-gamma directly correlates with antidiabetic activities, we compared the effects of 4 TZDs (troglitazone, pioglitazone, BRL-49653, and a new derivative, NC-2100) on the activation of PPAR-gamma in a reporter assay, transcription of the target genes, adipogenesis, plasma glucose and triglyceride levels, and body weight using obese KKAy mice. There were 10- to 30-fold higher concentrations of NC-2100 required for maximal activation of PPAR-gamma in a reporter assay system, and only high concentrations of NC-2100 weakly induced transcription of the PPAR-gamma but not PPAR-alpha target genes in a whole mouse and adipogenesis of cultured 3T3L1 cells, which indicates that NC-2100 is a weak PPAR-gamma activator. However, low concentrations of NC-2100 efficiently lowered plasma glucose levels in KKAy obese mice. These results strongly suggest that TZD-induced activation of PPAR-gamma does not directly correlate with antidiabetic (glucose-lowering) action. Furthermore, NC-2100 caused the smallest body weight increase of the 4 TZDs, which may be partly explained by the finding that NC-2100 efficiently induces uncoupling protein (UCP)-2 mRNA and significantly induces UCP1 mRNA in white adipose tissue (WAT). NC-2100 induced UCP1 efficiently in mesenteric WAT and less efficiently in subcutaneous WAT, although pioglitazone and troglitazone also slightly induced UCP1 only in mesenteric WAT. These characteristics of NC-2100 should be beneficial for humans with limited amounts of brown adipose tissue.
A systematic analysis to examine the effects of peroxisome proliferator-activated receptor (PPAR)a a agonists on the expression levels of all the nutrient/drug plasma-membrane transporters in the mouse small intestine was performed. Transporter mRNAs that were induced or repressed by two independent PPARa a-specific agonists were identified by a genome-wide microarray method, and the changes were confirmed by real-time PCR using RNA isolated from the intestines and livers of wild-type and PPARa a-null mice. Expression levels of seven nutrient/drug transporters (Abcd3, Octn2/Slc22a5, FATP2/Slc27a2, Slc22a21, Mct13/Slc16a13, Slc23a1 and Bcrp/ Abcg2) in the intestine were up-regulated and the expression level of one (Mrp1/Abcc1) was down-regulated by PPARa a; although the previously report that the H ؉ /peptide co-transporter 1 (Pept1) is up-regulated by PPARa a was not replicated in our study. We propose that the transport processes can be coordinately regulated with intracellular metabolism by nutrient nuclear receptors.
Our results indicated that diverse factors modulate the expression of resistin in the adipose tissues of mice, and suggested that resistin is not a master hormone linking obesity to diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.