BackgroundIntraepithelial lymphocytes (IELs) in the intestine play important roles in the regulation of local immune responses. Although their functions have been studied in a variety of animal experiments, in vitro studies on spatiotemporal behaviors of IELs and their interaction with intestinal epithelial cells (IECs) have been hampered due to the lack of a suitable culture system. In this study, we aimed at developing a novel co-culture system of IELs with IECs to investigate dynamic interaction between these two populations of cells in vitro.MethodsWe optimized experimental conditions under which murine IELs can be efficiently maintained with IECs cultured as three-dimensional organoids. We then tested the effect of IL-2, IL-7, and IL-15 on the maintenance of IELs in this co-culture system. By time-lapse imaging, we also examined the dynamic behaviors of IELs.ResultsIELs can be expanded with epithelial organoids in the presence of IL-2, IL-7, and IL-15. IELs were efficiently maintained within and outside of organoids showing a ~four-fold increase in both αβT and γδT IELs for a period of 2 weeks. Four-dimensional fluorescent imaging revealed an active, multi-directional movement of IELs along the basolateral surface of IECs, and also their inward or outward migration relative to organoid structures. Cell tracking analysis showed that αβT and γδT IELs shared indistinguishable features with regard to their dynamics.ConclusionsThis novel co-culture method could serve as a unique tool to investigate the motility dynamics of IELs and their temporal and spatial interaction with IECs in vitro.Electronic supplementary materialThe online version of this article (doi:10.1007/s00535-016-1170-8) contains supplementary material, which is available to authorized users.
Similar serial changes in liver function tests in both Graves' disease and painless thyroiditis strongly suggest that increases of AST and ALT after starting ATD therapy may not be due to ATD side effects but may be induced by changes in thyroid function.
Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem corticobulbar tract or the vagal rootlets and to avoid the postoperative dysphagia that is often associated with brainstem or skull base surgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.