The effectiveness of L- and D-amino acids for detecting the early stage of infection in bacterial imaging was compared. We evaluated the accumulation of 3H-L-methionine (Met), 3H-D-Met, 3H-L-alanine (Ala), and 3H-D-Ala in E. coli EC-14 and HaCaT cells. Biological distribution was assessed in control and lung-infection-model mice with EC-14 using 3H-L- and D-Met, and 18F-FDG. A maximum accumulation of 3H-L- and D-Met, and 3H-L- and D-Ala occurred in the growth phase of EC-14 in vitro. The accumulation of 3H-L-Met and L-Ala was greater than that of 3H-D-Met and D-Ala in both EC-14 and HaCaT cells. For all radiotracers, the accumulation was greater in EC-14 than in HaCaT cells at early time points. The accumulation was identified at 5 min after injection in EC-14, whereas the accumulation gradually increased in HaCaT cells over time. There was little difference in biodistribution between 3H-L-and D-Met except in the brain. 3H-L- and D-Met were sensitive for detecting areas of infection after the spread of bacteria throughout the body, whereas 18F-FDG mainly detected primary infection areas. Therefore, 11C-L- and D-Met, radioisotopes that differ only in terms of 3H labeling, could be superior to 18F-FDG for detecting bacterial infection in lung-infection-model mice.
The World Health Organization has cautioned that antimicrobial resistance (AMR) will be responsible for an estimated 10 million deaths annually by 2050. To facilitate prompt and accurate diagnosis and treatment of infectious disease, we investigated the potential of amino acids for use as indicators of bacterial growth activity by clarifying which amino acids are taken up by bacteria during the various growth phases. In addition, we examined the amino acid transport mechanisms that are employed by bacteria based on the accumulation of labeled amino acids, Na+ dependence, and inhibitory effects using a specific inhibitor of system A. We found that 3H-L-Ala accurately reflects the proliferative activity of Escherichia coli K-12 and pathogenic EC-14 in vitro. This accumulation in E. coli could be attributed to the amino acid transport systems being different from those found in human tumor cells. Moreover, biological distribution assessed in infection model mice with EC-14 using 3H-L-Ala showed that the ratio of 3H-L-Ala accumulated in infected muscle to that in control muscle was 1.20. By detecting the growth activity of bacteria in the body that occurs during the early stages of infection by nuclear imaging, such detection methods may result in expeditious diagnostic treatments for infectious diseases.
Gastrointestinal tract absorption of cationic anticancer drugs and medicines was estimated using whole-body imaging following oral [123I]MIBG administration. [123I]MIBG was added to cultures of human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)2B1, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)1, OCT2, and OCT3 with and without cimetidine (an OCTN and OCT inhibitor) and L-carnitine (an OCTN inhibitor). Biodistribution analyses and single-photon emission computed tomography (SPECT) imaging in normal and dextran sodium sulfate (DSS)-induced experimental colitis mice were conducted using [123I]MIBG with and without cimetidine. [123I]MIBG uptake was significantly higher in HEK293/OCTN1, 2, and OCT1-3 cells than in mock cells. Uptake via OCTN was inhibited by L-carnitine, whereas OCT-mediated uptake was inhibited by cimetidine. Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of [123I]MIBG in the blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading compared with normal mice, whereas significantly higher accumulation in the stomach and kidney was observed after [123I]MIBG injection. [123I]MIBG imaging after oral administration can be used to estimate gastrointestinal absorption in the small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.