During the 1990s, HIV-1 spread rapidly through drug networks in Ukraine and from there throughout the former Soviet Union. To examine the origins of this epidemic, the genetics of HIV-1 in Ukraine were studied. Proviral DNA from PBMC was extracted and PCR amplified. Part of pol and nearly full genomes of HIV-1 were sequenced and characterized. The predominant genetic form in 163 strains was subtype A (66%), followed by subtypes B (30%), C (2%), D (1%), and a new AB recombinant form (1%). HIV strains from Kiev were diverse having subtypes A, B, C, and D. In Crimea, Donetsk, Poltava, and Odessa, however, the strains were overwhelmingly subtype A, while in Nikolaev subtype B predominated. After the near simultaneous introduction of subtypes A and B in Ukraine, subtype B remained where it was introduced while subtype A spread widely, creating the fastest growing epidemic in the world.
Nearly full-length genome sequencing of HIV-1 using peripheral blood mononuclear cells (PBMC) DNA as a template for PCR is now a relatively routine laboratory procedure. However, this has not been the case when using virion RNA as the template and this has made full genome analysis of circulating viruses difficult. Therefore, a well-developed procedure for sequencing of full-length HIV-1 RNA directly from plasma was needed. Plasma from U.S. donors representing a range of viral loads (VL) was used to develop the assay. RNA was extracted from plasma and reverse-transcribed. Two or three overlapping regions were PCR amplified to cover the entire viral genome and sequenced for verification. The success of the procedure was sensitive to VL but was routinely successful for VL greater than 105 and the rate declined in proportion to the VL. While the two-amplicon strategy had an advantage of increasing the possibility of amplifying a single species of HIV-1, the three-amplicon strategy was more successful in amplifying samples with low viral loads. This protocol provides a useful tool for molecular analysis to understand the HIV epidemic and pathogenesis, as well as diagnosis, therapy and future vaccine strategies.
There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen.
BackgroundThe molecular epidemiology of HIV-1 in the Caribbean has been described using partial genome sequencing; subtype B is the most common subtype in multiple countries. To expand our knowledge of this, nearly full genome amplification, sequencing and analysis was conducted.Methodology/Principal FindingsVirion RNA from sera collected in Haiti, Dominican Republic, Jamaica and Trinidad and Tobago were reverse transcribed, PCR amplified, sequenced and phylogenetically analyzed. Nearly full genomes were completed for 15 strains; partial pol was done for 67 strains. All but one of the 67 strains analyzed in pol were subtype B; the exception was a unique recombinant of subtypes B and C collected in the Dominican Republic. Of the nearly full genomes of 14 strains that were subtype B in pol, all were subtype B from one end of the genome to the other and not inter-subtype recombinants. Surprisingly, the Caribbean subtype B strains clustered significantly with each other and separate from subtype B from other parts of the pandemic.ConclusionsThe more complete analysis of HIV-1 from 4 Caribbean countries confirms previous research using partial genome analysis that the predominant subtype in circulation was subtype B. The Caribbean strains are phylogenetically distinct from other subtype B strains although the biological meaning of this finding is unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.