We use a coarse-grained protein model to characterize the critical nucleus, structural stability, and fibril elongation propensity of Aβ 1−40 oligomers for the C 2x and C 2z quaternary forms proposed by solid-state NMR. By estimating equilibrium populations of structurally stable and unstable protofibrils, we determine the shift in the dominant population from free monomer to ordered fibril at a critical nucleus of ten chains for the C 2x and C 2z forms. We find that a minimum assembly of 16 monomer chains is necessary to mimic a mature fibril, and show that its structural stability correlates with a plateau in the hydrophobic residue density and a decrease in the likelihood of losing hydrophobic interactions by rotating the fibril subunits. While Aβ 1−40 protofibrils show similar structural stability for both C 2x and C 2z quaternary structures, we find that the fibril elongation propensity is greater for the C 2z form relative to the C 2x form. We attribute the increased propensity for elongation of the C 2z form as being due to a stagger in the interdigitation of the N-terminal and C-terminal β-strands, resulting in structural asymmetry in the presented fibril ends that decreases the amount of incorrect addition to the N terminus on one end. We show that because different combinations of stagger and quaternary structure affect the structural symmetry of the fibril end, we propose that differences in quaternary structures will affect directional growth patterns and possibly different morphologies in the mature fiber.
Using a coarse-grained model of the Abeta peptide, we analyze the Arctic (E22G), Dutch (E22Q), and Flemish (A21G) familial Alzheimer's disease (FAD) mutants for any changes in the stability of amyloid assemblies with respect to the wild-type (WT) sequence. Based on a structural reference state of two protofilaments aligned to create the "agitated" protofibril as determined by solid-state NMR, we determine free energy trends for Abeta assemblies for the WT and FAD familial sequences. We find that the structural characteristics and oligomer size of the critical nucleus vary dramatically among the hereditary mutants. The Arctic mutant's disorder in the turn region introduces new stabilizing interactions that better align the two protofilaments, yielding a well-defined protofibril axis at relatively small oligomer sizes with respect to WT. By contrast, the critical nucleus for the Flemish mutant is beyond the 20 chains characterized in this study, thereby showing a strong shift in the equilibrium toward monomers with respect to larger protofibril assemblies. The Dutch mutant forms more ordered protofilaments than WT, but exhibits greater disorder in protofibril structure that includes an alternative polymorph of the WT fibril. An important conclusion of this work is that the Dutch mutant does not support the agitated protofibril assembly. We discuss the implications of the structural ensembles and free energy profiles for the FAD mutants in regards to interpretation of the kinetics of fibril assembly using chromatography and dye-binding experiments.
CONSPECTUS Protein aggregation can be defined as the sacrifice of stabilizing intrachain contacts of the functional state that are replaced with interchain contacts to form non-functional states. The resulting aggregate morphologies range from amorphous structures without long-range order typical of nondisease proteins involved in inclusion bodies to highly structured fibril assemblies typical of amyloid disease proteins. In this Account, we describe the development and application of computational models for the investigation of nondisease and disease protein aggregation as illustrated for the proteins L and G and the Alzheimer’s Aβ systems. In each case, we validate the models against relevant experimental observables and then expand on the experimental window to better elucidate the link between molecular properties and aggregation outcomes. Our studies show that each class of protein exhibits distinct aggregation mechanisms that are dependent on protein sequence, protein concentration, and solution conditions. Nondisease proteins can have native structural elements in the denatured state ensemble or rapidly form early folding intermediates, which offers avenues of protection against aggregation even at relatively high concentrations. The possibility that early folding intermediates may be evolutionarily selected for their protective role against unwanted aggregation could be a useful strategy for reengineering sequences to slow aggregation and increase folding yield in industrial protein production. The observed oligomeric aggregates that we see for nondisease proteins L and G may represent the nuclei for larger aggregates, not just for large amorphous inclusion bodies, but potentially as the seeds of ordered fibrillar aggregates, since most nondisease proteins can form amyloid fibrils under conditions that destabilize the native state. By contrast, amyloidogenic protein sequences such as Aβ1–40,42 and the familial Alzheimer’s disease (FAD) mutants favor aggregation into ordered fibrils once the free-energy barrier for forming a critical nucleus is crossed. However, the structural characteristic and oligomer size of the soluble nucleation species have yet to be determined experimentally for any disease peptide sequence, and the molecular mechanism of polymerization that eventually delineates a mature fibril is unknown. This is in part due to the limited experimental access to very low peptide concentrations that are required to characterize these early aggregation events, providing an opportunity for theoretical studies to bridge the gap between the monomer and fibril end points and to develop testable hypotheses. Our model shows that Aβ1–40 requires as few as 6–10 monomer chains (depending on sequence) to begin manifesting the cross-β order that is a signature of formation of amyloid filaments or fibrils assessed in dye-binding kinetic assays. The richness of the oligomeric structures and viable filament and fibril polymorphs that we observe may offer structural clues to disease virulence variations that...
A simple low-cost yet versatile microtechnology platform is demonstrated as capable of performing a variety of microfluidic actuation functions including on-chip pumping, mixing, cell/particle sorting, and sample extraction. This technology termed air-liquid cavity acoustic transducers (ALCATs) uses trapped air bubbles as the functional elements. When an external acoustic energy source is applied to the device, the trapped bubbles oscillate, generating acoustic streaming within the fluid. By controlling their relative position and angle with the liquid channel/chamber, the ALCAT can push away or pull in the surrounding liquid contents and its contained particulates. In this report, we provide a general introduction of the ALCAT microtechnology platform and its application to enhancing biomolecular assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.