1. Compared to information for herbivores and omnivores, knowledge on xenobiotic metabolism in carnivores is limited. The cytochrome P450 2C (CYP2C) subfamily is recognized as one of the most important CYP groups in human and dog. We identified and characterized CYP2C isoforms and variants in cat, which is an obligate carnivore. 2. Quantitative RT-PCR and immunoblot analyses were carried out to evaluate the expression of CYP2C in the liver and small intestine. A functional CYP2C isoform was heterologously expressed in yeast microsomes to determine the enzymatic activity. 3. Cat had two CYP2C genes, 21 and 41, in the genome; however, CYP2C21P was a pseudogene that had many stop codons. Three splicing variants of CYP2C41 were identified (v1-v3), but only one of them (v1) showed a complete deduced amino acid sequence as CYP2C protein. Transcripts of feline CYP2C41v1 were detected but the amounts were negligible or very small in the liver and small intestine. Immunoreactivity to an antihuman CYP2C antibody was confirmed in the recombinant feline CYP2C41v1 but not in the feline liver. 4. Recombinant feline CYP2C41v1 metabolized several substrates, including dibenzylfluorescein that is specific to human CYP2C. 5. The results suggest a limited role of functional CYP2C isoforms in xenobiotic metabolism in cat.
1. Little is known about drug metabolism in carnivores. Although the domestic cat (Felis catus) is an obligate carnivore and is the most common companion animal, usage and dosage of many drugs are determined according to information obtained from humans and dogs. We determined the complete cDNA sequence of CYP2B6 from the feline lung. 2. Feline CYP2B6 consists of 494 deduced amino acids, showing highest identity with the dog CYP2B ortholog, followed by those of horse, pig, primate and human. 3. Feline CYP2B6 transcripts were expressed predominantly in the lung and slightly in the small intestine but not in the liver without significant sex-dependent differences. Western blot analysis with an anti-human CYP2B6 antibody confirmed the presence of CYP2B protein in the lung but not in the liver. 4. Feline CYP2B6 proteins heterologously expressed in Escherichia coli metabolized several substrates specific to human CYP2B6, including 7-ethoxy-4-(trifluoromethyl) coumarin (EFC). The metabolic activity was strongly inhibited by medetomidine and atipamezole, potent inhibitors of canine CYP2B11 (now officially CYP2B6) as well as by ticlopidine and sertraline, inhibitors selective to human CYP2B6. 5. The results suggest that feline CYP2B6 is a functional CYP2B ortholog that plays a role in the local defense mechanism in the cat respiratory system and intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.