Significance In this study, we found that human endogenous retoriviruses type-H (HERV-Hs) are transiently hyperactivated during reprogramming toward induced pluripotent stem cells (iPSCs) and play important roles in this process. However, when reprogramming is complete and cells acquire full pluripotency, HERV-H activity should decrease to levels comparable with those in embryonic stem cells because failure to resilence this activity leads to the differentiation-defective phenotype in neural lineage. We also found that during reprogramming, reprogramming factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), and Krüppel-like factor 4 (KLF4) (OSK) bind to and activate long-terminal repeats of HERV-Hs. KLF4 possibly precludes Tripartite motif containing 28 and recruits not only OCT3/4 and SOX2, but also E1A binding protein p300 (p300) histone acethyltransferase on HERV-H loci. Therefore, OKSM-induced HERV-H activation constitutes an unanticipated and critical mechanism for iPSC formation.
We examined the gene expression and DNA methylation of 49 human induced pluripotent stem cells (hiPSCs) and 10 human embryonic stem cells and found overlapped variations in gene expression and DNA methylation in the two types of human pluripotent stem cell lines. Comparisons of the in vitro neural differentiation of 40 hiPSCs and 10 human embryonic stem cells showed that seven hiPSC clones retained a significant number of undifferentiated cells even after neural differentiation culture and formed teratoma when transplanted into mouse brains. These differentiation-defective hiPSC clones were marked by higher expression levels of several genes, including those expressed from long terminal repeats of specific human endogenous retroviruses. These data demonstrated a subset of hiPSC lines that have aberrant gene expression and defective potential in neural differentiation, which need to be identified and eliminated before applications in regenerative medicine.
Soluble factors such as growth factors and cytokines present in the tumor microenvironment regulate a variety of genes associated with malignant properties of tumor cells such as growth, migration, invasion, and metastatic capacities. CD44 is a multi-functional adhesion molecule involved in cell to cell and cell to extracellular matrix interaction, the trapping of growth factors and cytokines, and the regulation of cell traffic. Growth factors and cytokines modify the expression, selective isoform splicing and functions of CD44, resulting in changes in the biological properties of the cells. These include adhesion of circulating tumor cells to endothelium and body cavities, and survival in response to growth factors presented by the CD44 molecule. The modification of CD44 on both tumor and host cells by growth factors may play an important role in tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.