Gas sensing with nanosized oxide materials is attracting much attention because of its promising capability of detecting various toxic gases at very low concentrations. In this study, using clustered SnO2 nanoparticles formed by controlled particle aggregation, we fabricated highly sensitive gas sensing films to detect large gas molecules such as toluene. A hydrothermal method using stanic acid (SnO2·nH2O) gel as a precursor produced monodispersed SnO2 nanoparticles of ca. 5 nm at pH 10.6. Decreasing the solution pH to 9.3 formed SnO2 clusters of ca. 45 nm that were assemblies of the monodispersed nanoparticles, as determined by dynamic light scattering, X-ray diffraction, and transmission electron microscopy analyses. Porous gas sensing films were successfully fabricated by a spin-coating method using the clustered nanoparticles due to the loose packing of the larger aggregated particles. The sensor devices using the porous films showed improved sensor responses (sensitivities) to H2 and CO at 300 °C. The enhanced sensitivity resulted from an increase in the film's porosity, which promoted the gas diffusivity of the sensing films. Pd loading onto the clustered nanoparticles further upgraded the sensor response due to catalytic and electrical sensitization effects of Pd. In particular, the Pd-loaded SnO2 nanoparticle clusters showed excellent sensitivity to toluene, able to detect it at down to low ppb levels.
Improvements in the responses of semiconductor gas sensors and reductions in their detection limits toward volatile organic compounds (VOCs) are required in order to facilitate the simple detection of diseases, such as cancer, through human-breath analysis. In this study, we introduce a heater-switching, pulse-driven, micro gas sensor composed of a microheater and a sensor electrode fabricated with Pd-SnO-clustered nanoparticles as the sensing material. The sensor was repeatedly heated and allowed to cool by the application of voltage to the microheater; the VOC gases penetrate into the interior of the sensing layer during its unheated state. Consequently, the utility factor of the pulse-driven sensor was greater than that of a conventional, continuously heated sensor. As a result, the response of the sensor to toluene was enhanced; indeed, the sensor responded to toluene at levels of 1 ppb. In addition, according to the relationship between its response and concentration of toluene, the pulse-driven sensor in this report can detect toluene at concentrations of 200 ppt and even lower. Therefore, the combination of a pulse-driven microheater and a suitable material designed to detect toluene resulted in improved sensor response, and facilitated ppt-level toluene detection. This sensor may play a key role in the development of medical diagnoses based on human breath.
Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.