This study assessed the radiographic appearance of bone graft domes longitudinally after osteotome sinus floor elevation using cone beam computed tomography (CBCT). This study presents the radiological findings of a 6-month follow-up CBCT study in maxillary osteotome sinus floor elevation. We examined 52 patients with a crestal bone height of less than 8 mm in the posterior maxilla who required sinus augmentation. Implants (n = 91) were subsequently placed in regenerated bone following osteotome sinus floor elevation; autogenous bone was used as the augmentation material. In all cases, the grafted augmentation material tended to be absorbed, but at least 1 mm of grafted augmentation material was recognized around the implant fixtures on CBCT at the second implant operation. The border between the grafted augmentation material and the existing bone was indistinct. The grafted area apical to the implants undergoes shrinkage and remodeling. It was suggested that sufficient grafted autogenous bone changes into bone to support an implant.
Fuelization of Italian ryegrass and Napier grass was examined by the combination of biological treatments and photocatalytic reforming (photo-Reform). The alkali-pretreated Italian ryegrass and Napier grass were subjected to the enzymatic saccharification using cellulase and xylanase. Xylose and glucose were produced in 56.6% and 71.1% from Italian ryegrass and in 49.5% and 67.3% from Napier grass, respectively. Xylose and glucose were converted to hydrogen by the photo-Reform using a Pt-loaded titanium oxide (Pt/TiO2) under UV irradiation. Moreover, a lowmoisture anhydrous ammonia (LMAA) pretreatment was performed for Italian ryegrass and Napier grass by keeping moist powdered biomass under NH3 gas atmosphere at room temperature for four weeks. The Italian ryegrass and Napier grass which were pretreated by LMAA method were subjected to simultaneous saccharification and fermentation (SSF) using a mixture of cellulase and xylanase as well as Saccharomyces cerevisiae in acetate buffer (pH 5.0). Ethanol and xylose were produced in 91.6% and 51.6% from LMAA-pretreated Italian ryegrass and 78.6% and 68.8% from Napier grass, respectively. After the evaporation of ethanol, xylose was converted to hydrogen by the photo-Reform. In the case of saccharification→photo-Reform, energy was recovered as hydrogen from the alkali-pretreated Italian ryegrass and Napier grass in 71.9% and 77.0% of energy recovery efficiency, respectively. In the case of SSF→photo-Reform, the energy was recovered in 82.7% and 77.2% as ethanol and hydrogen from the LMAA-pretreated Italian ryegrass and Napier grass, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.