Abstract. Metformin is a commonly used oral antihyperglycemic agent of the biguanide family. Recent studies suggest that metformin may reduce cancer risk and improve prognosis. However, the antitumor mechanism of metformin in several types of cancers, including hepatocellular carcinoma (HCC), has not been elucidated. The goal of the present study was to evaluate the effects of metformin on HCC cell proliferation in vitro and in vivo, and to study microRNAs (miRNAs) associated with the antitumor effect of metformin in vitro. We used the cell lines Alex, HLE and Huh7, and normal hepatocytes to study the effects of metformin on human HCC cells. In an in vivo study, athymic nude mice bearing xenograft tumors were treated with metformin or left untreated. Tumor growth was recorded after 4 weeks, and the expression of cell cycle-related proteins was determined. Metformin inhibited the proliferation of Alex, HLE and Huh7 cells in vitro and in vivo. Metformin blocked the cell cycle in G0/G1 in vitro and in vivo. This blockade was accompanied by a strong decrease of G1 cyclins, especially cyclin D1, cyclin E and cyclin-dependent kinase 4 (Cdk4). In addition, microRNA (miRNA) expression was markedly altered by the treatment with metformin in vitro and in vivo. In addition, various miRNAs induced by metformin also may contribute to the suppression of tumor growth. Our results demonstrate that metformin inhibits the growth of HCC, possibly by inducing G1 cell cycle arrest through the alteration of microRNAs.
Recent studies suggest that metformin, which is a member of the biguanide family and commonly used as an oral anti-hyperglycemic agent, may reduce cancer risk and improve prognosis of numerous types of cancer. However, the mechanisms underlying the antitumor effect of metformin on esophageal cancer remain unknown. The goal of the present study was to evaluate the effects of metformin on the proliferation of human ESCC in vitro, and to study changes in the expression profile of microRNAs (miRNAs), since miRNAs have previously been associated with the antitumor effects of metformin in other human cancers. The human ESCC cell lines T.T, KYSE30 and KYSE70 were used to study the effects of metformin on human ESCC in vitro. In addition, we used miRNA array tips to explore the differences between miRNAs in KYSE30 cells with and without metformin treatment. Metformin inhibited the proliferation of T.T, KYSE30 and KYSE70 cells in vitro. Metformin blocked the cell cycle in G0/G1 in vitro. This blockade was accompanied by a strong decrease of G1 cyclins, especially cyclin D1, as well as decreases in cyclin-dependent kinase (Cdk)4, Cdk6 and phosphorylated retinoblastoma protein (Rb). In addition, the expression of miRNAs was markedly altered with the treatment of metformin in vitro. Metformin inhibited the growth of three ESCC cell lines, and this inhibition may have involved reductions in cyclin D1, Cdk4 and Cdk6.
Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. microRNAs (miRNAs) are small non-coding RNAs that negatively regulate messenger RNA (mRNA). Recently, it was demonstrated that the aberrant expression of certain miRNAs plays a pivotal role in liver disease. The aim of the present study was to evaluate changes in miRNA profiles associated with metformin treatment in a NASH model. Eight-week-old male mice were fed a methionine- and choline-deficient (MCD) diet alone or with 0.08% metformin for 15 weeks. Metformin significantly downregulated the level of plasma transaminases and attenuated hepatic steatosis and liver fibrosis. The expression of miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p was enhanced among the 71 upregulated miRNAs, and the expression of miRNA-122, miRNA-194, miRNA-101b and miRNA-705 was decreased among 60 downregulated miRNAs in the liver of MCD-fed mice when compared with control mice. Of note, miRNA profiles were altered following treatment with metformin in MCD-fed mice. miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p were down-regulated, but miRNA-122, miRNA-194, miRNA-101b and miRNA-705 were significantly upregulated in MCD-fed mice treated with metformin. miRNA profiles were altered in MCD-fed mice and metformin attenuated this effect on miRNA expression. Therefore, miRNA profiles are a potential tool that may be utilized to clarify the mechanism behind the metformin-induced improvement of hepatic steatosis and liver fibrosis. Furthermore, identification of targetable miRNAs may be used as a novel therapy in human NASH.
Cisplatin [cis-diamminedichloroplatinum (II)], is a platinum coordination compound that is commonly used to treat hepatocellular carcinoma (HCC). It is also one of the most compelling anticancer drugs. Recent studies suggest that cisplatin may reduce cancer risk and improve prognosis. However, the antitumor mechanism of cisplatin in several types of cancers, including HCC, has not been elucidated. The goal of the present study was to evaluate the effects of cisplatin on the proliferation of HCC cells in vitro and to determine which microRNAs (miRNAs) are associated with the anticancer effects of cisplatin in vitro. We used various human HCC-derived cell lines to study the effects of cisplatin on human HCC cells. Cisplatin led to a strong dose- and time- dependent inhibition of cell proliferation in HLE, HLF, HuH7, Li-7, Hep3B and HepG2 cells in vitro. Cisplatin also blocked the progression of the cell cycle in the G0/G1 phase, which inhibited cyclin D1 and induced apoptosis. In addition, miRNA expression was markedly altered by treatment with cisplatin in vitro. Therefore, various miRNAs induced by cisplatin may also contribute to the suppression of cellular proliferation and apoptosis. Our results demonstrate that cisplatin inhibits the growth of HCC, possibly through the induction of G1 cell cycle arrest and apoptosis through the alteration of microRNA expression.
Abstract. Although gemcitabine (2',2'-difluorocytidine monohydrochloride) is a common anticancer agent of cholangiocellular carcinoma (CCC), its growth inhibitory effects and gemcitabine resistance in CCC cells are poorly understood. Our aims were to uncover the mechanism underlying the antitumor effect of gemcitabine and to analyze the mechanism regulating in vitro CCC cell gemcitabine resistance. In addition, we sought to identify miRNAs associated with the antitumor effects of gemcitabine in CCCs. Using a cell proliferation assay and flow cytometry, we examined the ability of gemcitabine to inhibit cell proliferation in three types of human CCC cell lines (HuCCT-1, Huh28, TKKK). We also employed western blotting to investigate the effects of gemcitabine on cell cycle-related molecules in CCC cells. In addition, we used array chips to assess gemcitabine-mediated changes in angiogenic molecules and activated tyrosine kinase receptors in CCC cells. We used miRNA array chips to comprehensively analyze gemcitabine-induced miRNAs and examined clusters of differentially expressed miRNAs in cells with and without gemcitabine treatment. Gemcitabine inhibited cell proliferation in a dose-and time-dependent manner in HuCCT-1 cells, whereas cell proliferation was unchanged in Huh28 and TKKK cells. Gemcitabine inhibited cell cycle progression in HuCCT-1 cells from G0/G1 to S phase, resulting in G1 cell cycle arrest due to the reduction of cyclin D1 expression. In addition, gemcitabine upregulated the angiogenic molecules IL-6, IL-8, ENA-78 and MCP-1. In TKKK cells, by contrast, gemcitabine did not arrest the cell cycle or modify angiogenic molecules. Furthermore, in gemcitabine-sensitive HuCCT-1 cells, gemcitabine markedly altered miRNA expression. The miRNAs and angiogenic molecules altered by gemcitabine contribute to the inhibition of tumor growth in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.