We investigated plating using fluorine-based rubber, which is a difficult-to-plate material. Adhesion strength of higher than 1.0 kN/m can be achieved using atmospheric UV irradiation for 3 min, followed by heat treatment at 120 ℃ for 60 min.
Chromium plating has excellent corrosion resistance and is widely used in industry. However, it also has a high environmental load. As an alternative, electric Ni-W plating is attracting attention. However, it is not widely used because the stress is high and the film is prone to cracks. Furthermore, although it is necessary to thicken the film to improve the corrosion resistance, there are also problems that the current efficiency is low and the plating time is long. Therefore, we investigate a film with high corrosion resistance by using the jet-flow plating method that enables plating at a high current density. Our results show that the jet-flow plating enables plating of 50 µm, and high corrosion resistance is obtained by randomly generating fine cracks in the film at 20 A·dm−2. We also found that the stress changed depending on the current density and shape of the crack also changed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.