Although possessing a remarkable anti-contamination capacity, the deflector jet valve is still confronted with erosion wear brought by solid particles in hydraulic oil. To describe the erosion wear mechanism in the hydraulic amplifier of servo valves, a RANS-based CFD simulation is conducted to obtain its internal wear distribution following the Oka erosion model, which shows the erosion wear in servo valves can be divided into four levels and the major wear happens on the shunt wedge, characterized by a regular and fluctuant distribution. Further, there exist multiple relative maximums of erosion rates, whose locations deviate from the jet center. On this basis, the correlation between the contamination level of hydraulic oil and the degree of erosion wear is established. Moreover, according to the working mechanism of the hydraulic amplifier, a new failure criterion of the deflector jet valve is proposed to carry out valve lifespan analyses. Then, a lifespan prediction formula is obtained, and calculations show that hydraulic oil must have a contamination level superior to NAS 5 if a lifespan of over 20,000 h is expected.
In current research on deflector jet servo valves, the receiver pressure estimated using traditional two-dimensional simulation and theoretical calculation is always lower than the experimental data; therefore, credible information about the flow field in the prestage part of the valve can hardly be obtained. To investigate this issue and understand the internal characteristics of the deflector jet valve, a realistic numerical model is constructed and a three-dimensional simulation carried out that displays a complex flow pattern in the deflector jet structure. Then six phases of the flow pattern are presented, and the defects of the two-dimensional simulation are revealed. Based on the simulation results, it is found that the jet in the deflector has a longer core area and the fluid near the shunt wedge cannot resist the impact of the high-speed fluid. Therefore, two assumptions about the flow distribution are presented by which to construct a more complete theoretical model. The receiver pressure and prestage pressure gain are significantly enhanced in the calculations. Finally, special experiments on the prestage of the servo valve are performed, and the pressure performance of the numerical simulation and the theoretical calculation agree well with the experimental data. Finally, the internal mechanism described by the theoretical and numerical models is verified. From this research, more accurate numerical and theoretical models are proposed by which to figure out the internal characteristics of the deflector jet valve.
An electro-hydraulic servo valve is objectively asymmetrical in the process of fabrication and assembly, and the zero position is the result of comprehensive adjustment. During the use of the electro-hydraulic servo valve, the rapid rise of temperature will lead to the zero drift phenomenon and the change in the flow state of the servo valve. With the change in temperature, the thicknesses of air gaps, the size of the orifice, the flow coefficient, the armature’s arm of force, the permanent magnets’ reluctances, and the polarization magnetomotive force, the stiffness of the spring tube and feedback rod will act on the property of the torque motor and the pilot stage. Considering the factors of temperature and processing assembly on the zero drift of the electro-hydraulic servo valve, a mathematical theory model describing the temperature zero drift characteristics is constructed. When the temperature range is 20–270 °C, the analysis demonstrated that the control error of the servo valve will exceed the expected 15%. The temperature has the most significant effect on the servo valve through the flow coefficient. The initial installation angle deflection is the domain route on the temperature zero drift, and other factors have less effect. Compared with the experimental results, the temperature-induced zero drift model correctly calculates the control error trend of the servo valve caused by an increase in temperature, and it will contribute to improving the control precision of the servo valve.
The flow field structure in the pilot stage of the electro-hydraulic servo valve is small and complex, and the extreme temperature environment will aggravate the self-excited oscillation, resulting in a decrease in the control accuracy of the servo valve. With the increase in temperature, the size of the orifice, the temperature characteristics of the fluid and the pressure loss in the flow pipe will influence the characteristics of the pilot stage. Considering the influence of temperature and pressure loss, a theoretical mathematical model is established to describe the flow force in the pilot stage. To verify the accuracy of the theoretical model, CFD simulations of the flow force at different inlet pressures and deflection positions and temperatures are analyzed in this paper. As the temperature rises, the oil viscosity rapidly decreases, which results in the flow force acting on the flapper increasing with the temperature. When the temperature exceeds 50 °C, the effect of oil viscosity is small, and the flow force tends to decrease slightly with the combined effect. As the supply oil pressure increases and the flapper moves toward the nozzle, the flow force acting on the flapper increases, and the trend is consistent with the CFD simulation results. An experimental device is designed, including establishing the experimental conditions and measuring the flow force to validate the theoretical model and to observe the cavitation phenomenon of the pilot stage.
The flow-induced noise occurring in the prestage of the deflector jet servo valve (DJV) significantly affects the performance of DJV, which is a critical issue for electrohydraulic servo valves. To capture the root causes of flow-induced noise, DJV is numerically studied using computational aeroacoustics (CAA) methods in this paper. The acoustic field is investigated with Lighthill’s acoustic analogy based on the pulsation data from a large eddy simulation (LES). The flow-induced noise generation mechanism in DJV is revealed by analyzing the sound pressure level and vorticity distribution at different moments. Moreover, a kind of oscillation cavity model based on the Helmholtz oscillator is built, which reveals that the flow-induced noise is caused by self-excited oscillation and vortex. In addition, the result shows that continuous broadband dipole noise with medium- and high-frequency components of 1100 Hz and 2501 Hz dominates the DJV flow field. In order to avoid unexpected resonance, the natural frequency of the prestage should not coincide with the frequency of the flow oscillation frequency. Thus, this work can benefit the design and optimization of the prestage structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.