Japan was hit by typhoon Hagibis, which came with torrential rains submerging almost eight-thousand buildings. For fast alleviation of and recovery from flood damage, a quick, broad, and accurate assessment of the damage situation is required. Image analysis provides a much more feasible alternative than on-site sensors due to their installation and maintenance costs. Nevertheless, most state-of-art research relies on only ground-level images that are inevitably limited in their field of vision. This paper presents a water level detection system based on aerial drone-based image recognition. The system applies the R-CNN learning model together with a novel labeling method on the reference objects, including houses and cars. The proposed system tackles the challenges of the limited and wild data set of flood images from the top view with data augmentation and transfer-learning overlaying Mask R-CNN for the object recognition model. Additionally, the VGG16 network is employed for water level detection purposes. We evaluated the proposed system on realistic images captured at disaster time. Preliminary results show that the system can achieve a detection accuracy of submerged objects of 73.42% with as low as only 21.43 cm error in estimating the water level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.