To solve the difficult problems in the field of unconventional oil and gas extraction and hard rock excavation in urban underground spaces, this paper proposes a rock-breaking technique with high-temperature and high-pressure water under thermally driven conditions and establishes a coupled thermal-fluid-solid model with COMSOL Multiphysics (COMSOL Co., Ltd. Shanghai, China). Different simulation groups are established by controlling variables to explore the effects of the surrounding rock load, heat source power, and Biot coefficient on the damage evolution during thermally driven rock breaking. To make the results relevant to practical engineering, the damage evolution results under the maximum normal stress criterion, maximum normal strain criterion, and Coulomb-Navier damage criterion are considered, and a comparative analysis is performed. The results of this study show that an increase in unilateral load and heat source power accelerates the damage evolution rate, while an increase in bilateral load and Biot coefficient has the opposite effect. The damage evolution rate controlled by the maximum normal stress criterion is the fastest under general conditions. Finally, the advantages in rock breaking provided by the established method are verified by a comparison of results from the proposed model and a conventional hydraulic fracturing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.