Several studies suggest the involvement of dietary habits and gut microbiome in allergic diseases. However, little is known about the nutritional and gut microbial factors associated with the risk of allergic rhinitis (AR). We recruited 186 participants with symptoms of AR and 106 control subjects without symptoms of AR at the Hitachi Health Care Center, Japan. The habitual consumption of 42 selected nutrients were examined using the brief-type self-administered diet history questionnaire. Faecal samples were collected and subjected to amplicon sequencing of the 16S ribosomal RNA gene hypervariable regions. Association analysis revealed that four nutrients (retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR. Among 40 genera examined, relative abundance of Prevotella and Escherichia were associated with AR. Furthermore, significant statistical interactions were observed between retinol and Prevotella. The age- and sex-adjusted odds of AR were 25-fold lower in subjects with high retinol intake and high Prevotella abundance compared to subjects with low retinol intake and low Prevotella abundance. Our data provide insights into complex interplay between dietary nutrients, gut microbiome, and the development of AR.
Several studies suggest the involvement of dietary habits and gut microbiome in allergic diseases. However, little is known about the nutritional and gut microbial factors associated with the risk of allergic rhinitis (AR). We recruited 186 apparently healthy workers with symptoms of AR and 106 controls at the Hitachi Health Care Center, Japan. The habitual consumption of 42 selected nutrients were examined using the brief-type self-administered diet history questionnaire. Faecal samples were collected and subjected to amplicon sequencing of the 16S ribosomal RNA gene hypervariable regions. Association analysis revealed that four nutrients (retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR. Among 40 genera examined, relative abundance of Prevotella and Escherichia were associated with AR. Furthermore, significant statistical interactions were observed between retinol and Prevotella. The age- and sex-adjusted odds of AR were 25-fold lower in subjects with high retinol intake and high Prevotella abundance compared to subjects with low retinol intake and low Prevotella abundance. Our data provide insights into complex interplay between dietary nutrients, gut microbiome, and the development of AR.
Dimension reduction has been used to visualise the distribution of multidimensional microbiome data, but the composite variables calculated by the dimension reduction methods have not been widely used to investigate the relationship of the human gut microbiome with lifestyle and disease. In the present study, we applied several dimension reduction methods, including principal component analysis (PCA), principal coordinate analysis (PCoA), non-metric multidimensional scaling (NMDS), and non-negative matrix factorization (NMF), to a microbiome dataset from 186 subjects with symptoms of AR and 106 controls. All the dimension reduction methods supported that the enterotype clusters were overlapped in the dimension reduction plots, and that the distribution of microbial data points appeared to be continuous rather than discrete. Comparison of the composite variables calculated from the different dimension reduction methods showed that the characteristics of the composite variables differed between the dimension reduction methods. The second composite variable calculated from PCoA was significantly associated with the intake of several nutrients, including omega-3 polyunsaturated fatty acids, and the risk of AR. The composite variable was also correlated with the relative abundance of Bifidobacterium, and thus, Bifidobacterium was related to the risk of AR and intake of several nutrients through dimension reduction. Our results highlight the usefulness of the dimension reduction methods for investigating the association of microbial composition with lifestyle and disease in clinical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.