Rapid antimicrobial action is an important advantage of antimicrobial peptides (AMPs) over antibiotics, which is also a reason for AMPs being less likely to induce bacterial resistance. However, the structural parameters and underlying mechanisms affecting the bacterial killing rate of AMPs remain unknown. In this study, we performed a structure−activity relationship (SAR) study using As-CATH4 and 5 as templates. We revealed that hydrophobicity, rather than other characteristics, is the critical structural parameter determining the bacterial killing rate of α-helical AMPs. With the hydrophobicity increase, the action rates of AMPs including bacterial binding, lipopolysaccharides neutralization, and outer and inner membrane permeabilization increased. Additionally, the higher hydrophobic AMPs with enhanced bacterial killing rates possess better in vivo therapeutic potency and a lower propensity to induce bacterial resistance. These findings revealed the importance of the bacterial killing rate for AMPs and are of great significance to the design and optimization of AMP-related drugs.
The
interfacial dynamic interactions between molecules and cell
membranes are critical in many basic biological processes. An effective
method for sensitive, real-time, and noninvasive monitoring of these
processes is needed. Here, using photoelectric responses of a silicon
wafer, the charge–discharge processes of a phospholipid membrane
are recorded as voltage transients, which directly reflect the instant
structure and properties of the membrane. Based on the time evolution
of the as-calculated charge relaxation time constant, dynamic changes
in the membrane structure under molecular actions can be analyzed.
The swelling and Tween 20 action processes on both mono- and multilayered
membranes were taken as examples, which showed more mechanism details
in comparison to the traditional X-ray diffraction or fluorescence
imaging tests. Our method provides a promising solution for label-free,
noninvasive, and real-time studies on the dynamic interactions between
molecules and a membrane.
Extensive effort has been devoted to developing new clinical therapies based on membrane-active peptides (MAPs). Previous models on the membrane action mechanisms of these peptides mostly focused on the MAP–membrane interactions in a local region, while the influence of the spatial heterogeneity of the MAP distribution on the membrane was much ignored. Herein, three types of natural peptide variants, AS4-1, AS4-5, and AS4-9, with similar amphiphilic α-helical structures but distinct hydrophobic degrees (AS4-1 < AS4-5 < AS4-9) and net charges (+9 vs. +7 vs. +5), were used to interact with a mixed phosphatidylcholine (PC) and phosphatidylglycerol (PG) membrane. A combination of giant unilamellar vesicle (GUV) leakage assays, atomic force microscopy (AFM) characterizations, and molecular dynamics (MD) simulations demonstrated the coexistence of multiple action mechanisms of peptides on a membrane, probably due to the spatially heterogeneous distribution of peptides on the membrane surface. Specifically, the most hydrophobic peptide (i.e., AS4-9) had the strongest membrane binding, perturbation, and permeabilization effects, leading to the formation of large peptide–lipid aggregates (10 ± 5 nm in height and 150 ± 50 nm in size), as well as continuous fragments and ridges on the supported membrane surface. The AS4-5 peptides, with a half-hydrophilic and half-hydrophobic structure, induced membrane lysis in addition to reconstruction. The most hydrophilic peptide AS4-1 only exhibited unstable binding on the supported membrane surface. These results demonstrate the heterogeneous structural disturbance of model cell membranes by amphiphilic α-helical peptides, which could be significantly strengthened by increasing the degree of hydrophobicity and/or local number density of peptides. This work provides support for the modulation of the membrane activity of MAPs by adjusting their hydrophobicity and local concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.